Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Med Chem ; 67(11): 9731-9744, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38807539

ABSTRACT

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.


Subject(s)
Heart Failure , Potassium Channel Blockers , Animals , Heart Failure/drug therapy , Humans , Rats , Potassium Channel Blockers/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/chemical synthesis , Structure-Activity Relationship , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Drug Discovery , Diuresis/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/therapeutic use , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Male , Rats, Sprague-Dawley
2.
J Med Chem ; 65(6): 4534-4564, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35261239

ABSTRACT

Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.


Subject(s)
Anesthetics, General , Neuralgia , Animals , Ethers/therapeutic use , Mice , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats , Spinal Cord , Structure-Activity Relationship
3.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35257579

ABSTRACT

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Subject(s)
Amines , Neuralgia , Animals , Brain , Mice , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats , Spinal Cord
4.
Glycobiology ; 31(10): 1390-1400, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34228782

ABSTRACT

Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has been implicated in a plethora of pathological disorders including fibrosis, inflammation, cancer and metabolic diseases. TD139-a thio-digalactoside inhibitor developed by Galecto Biotech as a potential therapeutic for idiopathic pulmonary fibrosis-is the most advanced small-molecule Gal-3 inhibitor in clinical studies. It binds to human Gal-3 with high affinity but has lower affinity towards mouse and rat homologs, which is also manifested in the differential inhibition of Gal-3 function. Using biophysical methods and high-resolution X-ray co-crystal structures of TD139 and Gal-3 proteins, we demonstrate that a single amino acid change corresponding to A146 in human Gal-3 is sufficient for the observed reduction in the binding affinity of TD139 in rodents. Site-directed mutagenesis of A146V (in human Gal-3) and V160A (in mouse Gal-3) was sufficient to interchange the affinities, mainly by affecting the off rates of the inhibitor binding. In addition, molecular dynamics simulations of both wild-type and mutant structures revealed the sustained favorable noncovalent interactions between the fluorophenyl ring and the active site A146 (human Gal-3 and mouse V160A) that corroborate the finding from biophysical studies. Current findings have ramifications in the context of optimization of drug candidates against Gal-3.


Subject(s)
Blood Proteins , Galectins , Thiogalactosides , Humans , Binding Sites/drug effects , Blood Proteins/antagonists & inhibitors , Blood Proteins/metabolism , Galectins/antagonists & inhibitors , Galectins/metabolism , Thiogalactosides/metabolism , Thiogalactosides/pharmacology
5.
Lupus ; 30(5): 762-774, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33497307

ABSTRACT

OBJECTIVE: Despite the significant advancement in the understanding of the pathophysiology of systemic lupus erythematosus (SLE) variable clinical response to newer therapies remain a major concern, especially for patients with lupus nephritis and neuropsychiatric systemic lupus erythematosus (NPSLE). We performed this study with an objective to comprehensively characterize Indian SLE patients with renal and neuropsychiatric manifestation with respect to their gene signature, cytokine profile and immune cell phenotypes. METHODS: We characterized 68 Indian SLE subjects with diverse clinical profiles and disease activity and tried to identify differentially expressed genes and enriched pathways. To understand the temporal profile, same patients were followed at 6 and 12-months intervals. Additionally, auto-antibody profile, levels of various chemokines, cytokines and the proportion of different immune cells and their activation status were captured in these subjects. RESULTS: Multiple IFN-related pathways were enriched with significant increase in IFN-I gene signature in SLE patients as compared to normal healthy volunteers (NHV). We identified two transcriptionally distinct clusters within the same cohort of SLE patients with differential immune cell activation status, auto-antibody as well as plasma chemokines and cytokines profile. CONCLUSIONS: Identification of two distinct clusters of patients based on IFN-I signature provided new insights into the heterogeneity of underlying disease pathogenesis of Indian SLE cohort. Importantly, patient within those clusters retain their distinct expression dynamics of IFN-I signature over the time course of one year despite change in disease activity. This study will guide clinicians and researchers while designing future clinical trials on Indian SLE cohort.


Subject(s)
Interferon Type I/genetics , Lupus Erythematosus, Systemic/metabolism , Lupus Nephritis/immunology , Lupus Vasculitis, Central Nervous System/immunology , Adult , Autoantibodies/immunology , Case-Control Studies , Cohort Studies , Cytokines/blood , Female , Follow-Up Studies , Gene Expression , Humans , India/epidemiology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/physiopathology , Lupus Nephritis/metabolism , Lupus Vasculitis, Central Nervous System/metabolism , Male , Microarray Analysis/methods , Severity of Illness Index
6.
J Pharmacol Exp Ther ; 376(1): 29-39, 2021 01.
Article in English | MEDLINE | ID: mdl-33127749

ABSTRACT

Expression and functional changes in the organic anion transporting polypeptide (OATP)-multidrug resistance-associated protein (MRP) axis of transporters are well reported in patients with nonalcoholic steatohepatitis (NASH). These changes can impact plasma and tissue disposition of endo- and exogenous compounds. The transporter alterations are often assessed by administration of a xenobiotic or by transporter proteomic analysis from liver biopsies. Using gene expression, proteomics, and endogenous biomarkers, we show that the gene expression and activity of OATP and MRP transporters are associated with disease progression and recovery in humans and in preclinical animal models of NASH. Decreased OATP and increased MRP3/4 gene expression in two cohorts of patients with steatosis and NASH, as well as gene and protein expression in multiple NASH rodent models, have been established. Coproporphyrin I and III (CP I and III) were established as substrates of MRP4. CP I plasma concentration increased significantly in four animal models of NASH, indicating the transporter changes. Up to a 60-fold increase in CP I plasma concentration was observed in the mouse bile duct-ligated model compared with sham controls. In the choline-deficient amino acid-defined high-fat diet (CDAHFD) model, CP I plasma concentrations increased by >3-fold compared with chow diet-fed mice. In contrast, CP III plasma concentrations remain unaltered in the CDAHFD model, although they increased in the other three NASH models. These results suggest that tracking CP I plasma concentrations can provide transporter modulation information at a functional level in NASH animal models and in patients. SIGNIFICANCE STATEMENT: Our analysis demonstrates that multidrug resistance-associated protein 4 (MRP4) transporter gene expression tracks with nonalcoholic steatohepatitis (NASH) progression and intervention in patients. Additionally, we show that coproporphyrin I and III (CP I and III) are substrates of MRP4. CP I plasma and liver concentrations increase in different diet- and surgery-induced rodent NASH models, likely explained by both gene- and protein-level changes in transporters. CP I and III are therefore potential plasma-based biomarkers that can track NASH progression in preclinical models and in humans.


Subject(s)
Coproporphyrins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Animals , Coproporphyrins/blood , Humans , Male , Mice , Mice, Inbred C57BL , Multidrug Resistance-Associated Proteins/genetics , Protein Binding , Rats , Rats, Sprague-Dawley , Sf9 Cells , Spodoptera
7.
J Psychopharmacol ; 33(1): 25-36, 2019 01.
Article in English | MEDLINE | ID: mdl-30484737

ABSTRACT

BACKGROUND: A significant proportion of patients suffering from major depression fail to remit following treatment and develop treatment-resistant depression. Developing novel treatments requires animal models with good predictive validity. MRL/lpr mice, an established model of systemic lupus erythematosus, show depression-like behavior. AIMS: We evaluated responses to classical antidepressants, and associated immunological and biochemical changes in MRL/lpr mice. METHODS AND RESULTS: MRL/lpr mice showed increased immobility in the forced swim test, decreased wheel running and sucrose preference when compared with the controls, MRL/MpJ mice. In MRL/lpr mice, acute fluoxetine (30 mg/kg, intraperitoneally (i.p.)), imipramine (10 mg/kg, i.p.) or duloxetine (10 mg/kg, i.p.) did not decrease the immobility time in the Forced Swim Test. Interestingly, acute administration of combinations of olanzapine (0.03 mg/kg, subcutaneously)+fluoxetine (30 mg/kg, i.p.) or bupropion (10 mg/kg, i.p.)+fluoxetine (30 mg/kg, i.p.) retained efficacy. A single dose of ketamine but not three weeks of imipramine (10 mg/kg, i.p.) or escitalopram (5 mg/kg, i.p.) treatment in MRL/lpr mice restored sucrose preference. Further, we evaluated inflammatory, immune-mediated and neuronal mechanisms. In MRL/lpr mice, there was an increase in autoantibodies' titers, [3H]PK11195 binding and immune complex deposition. There was a significant infiltration of the brain by macrophages, neutrophils and T-lymphocytes. p11 mRNA expression was decreased in the prefrontal cortex. Further, there was an increase in the 5-HT2aR expression, plasma corticosterone and indoleamine 2,3-dioxygenase activity. CONCLUSION: In summary, the MRL/lpr mice could be a useful model for Treatment Resistant Depression associated with immune dysfunction with potential to expedite antidepressant drug discovery.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Disease Models, Animal , Ketamine/therapeutic use , Lupus Erythematosus, Systemic/complications , Animals , Corticosterone/blood , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice , Mice, Inbred MRL lpr , Receptor, Serotonin, 5-HT2A/analysis
8.
ACS Med Chem Lett ; 9(5): 472-477, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29795762

ABSTRACT

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 5, 6, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.

9.
Pharmacol Biochem Behav ; 161: 53-61, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28911960

ABSTRACT

Approximately 30-60% of patients treated with existing antidepressants fail to achieve remission of depressive symptoms leading to Treatment Resistant Depression (TRD). There is an urgent need to develop novel medications, which is highly limited by the non-availability of relevant animal models with good predictive validity. ACTH administration has been shown to result in the resistance to acute and chronic effects of imipramine. However, the pharmacology of the model and the mechanisms contributing to the resistance are not completely understood. Furthermore, it is not known whether the ACTH administered animals show signs of depression-like behavior. Accordingly, we characterized the behavioral profile and sensitivity to antidepressants in BALB/c mice treated with ACTH and to evaluate some of the mechanisms responsible for the behavioral effects. Daily treatment with ACTH for 14, 21 or 28days failed to produce a depression-like phenotype in the sucrose preference test, voluntary wheel running or FST. In contrast, the acute antidepressant response in the FST was no longer observed in ACTH mice treated with fluoxetine, imipramine, duloxetine or bupropion. Interestingly, the combination of fluoxetine and a low dose of olanzapine, or the combination of fluoxetine and bupropion was efficacious in ACTH treated mice. Further, the sensitivity to a GluN2B receptor antagonist, radiprodil was retained in the ACTH model. To understand the mechanism responsible for the diminished response in these mice, we evaluated p11 (S100A10) mRNA expression and 5-HT2A protein expression. p11 expression was decreased and 5-HT2A protein content increased in ACTH treated mice. In summary, this model may have utility for the identification of novel treatments for TRD.


Subject(s)
Adrenocorticotropic Hormone/administration & dosage , Antidepressive Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Disease Models, Animal , Motor Activity/drug effects , Adrenocorticotropic Hormone/toxicity , Animals , Annexin A2/biosynthesis , Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/chemically induced , Depressive Disorder, Treatment-Resistant/metabolism , Dose-Response Relationship, Drug , Injections, Subcutaneous , Male , Mice , Mice, Inbred BALB C , Motor Activity/physiology , Receptor, Serotonin, 5-HT2A/biosynthesis , S100 Proteins/biosynthesis
10.
J Pharmacol Exp Ther ; 363(3): 377-393, 2017 12.
Article in English | MEDLINE | ID: mdl-28954811

ABSTRACT

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3S,4S)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate N-methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 µM) and had negligible activity in an assay panel containing 40 additional pharmacological targets. Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Organophosphates/therapeutic use , Piperidines/therapeutic use , Prodrugs/therapeutic use , Pyrrolidinones/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Administration, Intravenous , Allosteric Regulation , Animals , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacokinetics , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Waves/drug effects , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Dissociative Disorders/chemically induced , Macaca fascicularis , Male , Memory, Short-Term/drug effects , Mice , Motor Activity/drug effects , Organophosphates/adverse effects , Organophosphates/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Radioligand Assay , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Xenopus
11.
Br J Pharmacol ; 174(15): 2484-2500, 2017 08.
Article in English | MEDLINE | ID: mdl-28500657

ABSTRACT

BACKGROUND AND PURPOSE: Activators of Kv 11.1 (hERG) channels have potential utility in the treatment of acquired and congenital long QT (LQT) syndrome. Here, we describe a new hERG channel activator, 5-(((1H-indazol-5-yl)oxy)methyl)-N-(4-(trifluoromethoxy)phenyl)pyrimidin-2-amine (ITP-2), with a chemical structure distinct from previously reported compounds. EXPERIMENTAL APPROACH: Conventional electrophysiological methods were used to assess the effects of ITP-2 on hERG1a and hERG1a/1b channels expressed heterologously in HEK-293 cells. KEY RESULTS: ITP-2 selectively increased test pulse currents (EC50 1.0 µM) and decreased tail currents. ITP-2 activated hERG1a homomeric channels primarily by causing large depolarizing shifts in the midpoint of voltage-dependent inactivation and hyperpolarizing shifts in the voltage-dependence of activation. In addition, ITP-2 slowed rates of inactivation and made recovery from inactivation faster. hERG1a/1b heteromeric channels showed reduced sensitivity to ITP-2 and their inactivation properties were differentially modulated. Effects on midpoint of voltage-dependent inactivation and rates of inactivation were less pronounced for hERG1a/1b channels. Effects on voltage-dependent activation and activation kinetics were not different from hERG1a channels. Interestingly, hERG1b channels were inhibited by ITP-2. Inactivation-impairing mutations abolished activation by ITP-2 and led to inhibition of hERG channels. ITP-2 exerted agonistic effect from extracellular side of the membrane and could activate one of the arrhythmia-associated trafficking-deficient LQT2 mutants. CONCLUSIONS AND IMPLICATIONS: ITP-2 may serve as another novel lead molecule for designing robust activators of hERG channels. hERG1a/1b gating kinetics were differentially modulated by ITP-2 leading to altered sensitivity. ITP-2 is capable of activating an LQT2 mutant and may be potentially useful in the development of LQT2 therapeutics.


Subject(s)
ERG1 Potassium Channel/drug effects , Ion Channel Gating/drug effects , Pyrimidines/pharmacology , Small Molecule Libraries/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Pyrimidines/chemistry , Structure-Activity Relationship
12.
Drug Metab Dispos ; 42(3): 369-76, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335510

ABSTRACT

Cynomolgus monkeys are a commonly used species in preclinical drug discovery, and have high genetic similarity to humans, especially for the drug-metabolizing cytochrome P450s. However, species differences are frequently observed in the metabolism of drugs between cynomolgus monkeys and humans, and delineating these differences requires expressed CYPs. Toward this end, cynomolgus monkey CYP3A4 (c3A4) was cloned and expressed in a novel human embryonic kidney 293-6E cell suspension system. Following the preparation of microsomes, the kinetic profiles of five known human CYP3A4 (h3A4) substrates (midazolam, testosterone, terfenadine, nifedipine, and triazolam) were determined. All five substrates were found to be good substrates of c3A4, although some differences were observed in the Km values. Overall, the data suggest a strong substrate similarity between c3A4 and h3A4. Additionally, c3A4 exhibited no activity against non-h3A4 probe substrates, except for a known human CYP2D6 substrate (bufuralol), which suggests potential metabolism of human cytochrome CYP2D6-substrates by c3A4. Ketoconazole and troleandomycin showed similar inhibitory potencies toward c3A4 and h3A4, whereas non-h3A4 inhibitors did not inhibit c3A4 activity. The availability of a c3A4 preparation, in conjunction with commercially available monkey liver microsomes, will support further characterization of the cynomolgus monkey as a model to assess CYP3A-dependent clearance and drug-drug interactions.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Pharmaceutical Preparations/metabolism , Animals , Cloning, Molecular , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , HEK293 Cells , Humans , Kinetics , Macaca fascicularis , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Biological , Species Specificity , Substrate Specificity , Transfection
13.
J Struct Biol ; 184(2): 182-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24076154

ABSTRACT

Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active. Expression of rat IAP in Escherichia coli (rIAP-Ec) led to ~200-fold loss of activity that was partially recovered by the addition of external Zn(2+) and Mg(2+) ions. Crystal structures of rIAP-Ec and rIAP-Ic were determined and they provide rationale for the discrepancy in enzyme activities. Rat IAP-Ic retains its activity in presence of both Zn(2+) and Mg(2+) whereas activity of most other alkaline phosphatases (APs) including the cIAP was strongly inhibited by excess Zn(2+). Based on our crystal structure, we hypothesized the residue Q317 in rIAP, present within 7 Å of the Mg(2+) at M3, to be important for this difference in activity. The Q317H rIAP and H317Q cIAP mutants showed reversal in effect of Zn(2+), corroborating the hypothesis. Further analysis of the two structures indicated a close linkage between glycosylation and crown domain stability. A triple mutant of rIAP, where all the three putative N-linked glycosylation sites were mutated showed thermal instability and reduced activity.


Subject(s)
Alkaline Phosphatase/chemistry , Isoenzymes/chemistry , Alkaline Phosphatase/genetics , Amino Acid Substitution , Animals , Catalytic Domain , Coordination Complexes/chemistry , Crystallography, X-Ray , Enzyme Stability , Hydrogen-Ion Concentration , Isoenzymes/genetics , Kinetics , Macaca fascicularis , Magnesium/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Secondary , Rats , Sf9 Cells , Spodoptera , Zinc/chemistry
14.
Anal Biochem ; 383(2): 217-25, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18801329

ABSTRACT

Cytosolic phospholipase A(2) alpha (cPLA(2)alpha, type IVA phospholipase) acts at the membrane surface to release free arachidonic acid, which is metabolized into inflammatory mediators, including leukotrienes and prostaglandins. Thus, specific cPLA(2)alpha inhibitors are predicted to have antiinflammatory properties. However, a key criterion in the identification and development of such inhibitors is to distinguish between compounds that bind stoichiometrically to cPLA(2)alpha and nonspecific membrane perturbants. In the current study, we developed a method employing isothermal titration calorimetry (ITC) to characterize the binding of several distinct classes of cPLA(2)alpha inhibitors. Thermodynamic parameters and the binding constants were obtained following titration of the inhibitor to the protein at 30 degrees C and pH 7.4. The compounds tested bound cPLA(2)alpha with a 1:1 stoichiometry, and the dissociation constant K(d) of the inhibitors calculated from the ITC experiments correlated well with the IC(50) values obtained from enzymatic assays. Interestingly, binding was observed only in the presence of a micellar surface, even for soluble compounds. The site of binding of these inhibitors within cPLA(2)alpha was analyzed by testing for binding in the presence of methyl arachidonyl fluorophosphonate (MAFP), an irreversible active site inhibitor of cPLA(2)alpha. Lack of binding of inhibitors in the presence of MAFP suggested that the compounds tested bound specifically at or near the active site of the protein. Furthermore, the effect of various detergents on the binding of certain inhibitors to cPLA(2)alpha was also tested. The results are discussed with reference to thermodynamic parameters such as changes in enthalpy (DeltaH), entropy (DeltaS), and free energy (DeltaG). The data obtained from these studies provide not only structure-activity relationships for compounds but also important information regarding mechanism of binding. This is the first example of ITC used for studying inhibitors of enzymes with interfacial kinetics.


Subject(s)
Cytosol/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Group IV Phospholipases A2/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Benzophenones/chemistry , Benzophenones/metabolism , Benzophenones/pharmacology , CHO Cells , Catalytic Domain , Cell Membrane/metabolism , Cricetinae , Cricetulus , Group IV Phospholipases A2/metabolism , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Organophosphonates/metabolism , Organophosphonates/pharmacology , Protein Binding , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Solubility , Thermodynamics
15.
J Med Chem ; 51(12): 3388-413, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18498150

ABSTRACT

The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays. The binding of these compounds has been further examined using isothermal titration calorimetry. Finally, these compounds have shown efficacy when dosed orally in multiple acute and chronic prostaglandin and leukotriene dependent in vivo models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Group IV Phospholipases A2/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Benzoates/chemistry , Benzoates/pharmacology , Biological Availability , Bronchoconstriction/drug effects , Calorimetry , Carrageenan , Cell Line , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/chemically induced , Edema/drug therapy , Humans , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Male , Mice , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
16.
Bioorg Med Chem ; 16(3): 1345-58, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17998165

ABSTRACT

The synthesis and structure-activity relationship of a series of benzenesulfonamide indole inhibitors of cPLA(2)alpha are described. Substitution of the benzenesulfonamide led to analogues with 50-fold improvement in potency versus the unsubstituted benzenesulfonamide lead compound. Rat pharmacokinetics in a minimal formulation was used to prioritize compounds, leading to the discovery of a potent inhibitor of cPLA(2)alpha with oral efficacy in models of rat carrageenan paw edema and Ascaris suum airway challenge in naturally sensitized sheep.


Subject(s)
Group IV Phospholipases A2/antagonists & inhibitors , Group IV Phospholipases A2/metabolism , Indoles/pharmacology , Sulfonamides/chemistry , Administration, Oral , Animals , Ascariasis/drug therapy , Ascariasis/parasitology , Ascaris suum/physiology , Calorimetry , Humans , Indoles/chemistry , Indoles/therapeutic use , Molecular Structure , Rats , Sheep , Structure-Activity Relationship , Temperature , Benzenesulfonamides
17.
J Med Chem ; 50(6): 1380-400, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17305324

ABSTRACT

The synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed. Compound 123 (Ecopladib) is a sub-micromolar inhibitor of cPLA2alpha in the GLU micelle and rat whole blood assays. Compound 123 displayed oral efficacy in the rat carrageenan air pouch and rat carrageenan-induced paw edema models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Cytosol/enzymology , Indoles/chemical synthesis , Phospholipases A/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoates/pharmacokinetics , Benzoates/pharmacology , Carrageenan , Edema/chemically induced , Edema/drug therapy , Group IV Phospholipases A2 , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
18.
J Biomol Screen ; 11(5): 519-27, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16760367

ABSTRACT

Fatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders. In an effort to discover FAAH inhibitors, the authors have previously reported the development of a novel fluorescent assay using purified FAAH microsomes as an enzyme source and a fluorogenic substrate, arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA). Herein, the authors have adapted this assay to a high-throughput format and have screened a large library of small organic compounds, identifying a number of novel FAAH inhibitors. These data further verify that this fluorescent assay is sufficiently robust, efficient, and low-cost for the identification of FAAH inhibitory molecules and open this class of enzymes for therapeutic exploration.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/analysis , Microsomes/enzymology , Animals , Automation/methods , CHO Cells , Cricetinae , Humans , Inhibitory Concentration 50 , Models, Biological , Transfection
19.
Anal Biochem ; 354(1): 35-42, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16707086

ABSTRACT

A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes. Coincubation with an FAAH inhibitor, URB-597, competitively displaced the [3H]MAEA on the FAAH microsomes. The released radiolabel was then detected through an interaction with the SPA beads. The assay is specific for FAAH given that microsomes prepared from cells expressing the inactive FAAH-S241A mutant or vector alone had no significant ability to bind [3H]MAEA. Furthermore, the binding of [3H]MAEA to FAAH microsomes was abolished by selective FAAH inhibitors in a dose-dependent manner, with IC50 values comparable to those seen in a functional assay. This novel SPA has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.


Subject(s)
Amidohydrolases/analysis , Enzyme Inhibitors/pharmacology , Scintillation Counting , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Benzamides/metabolism , Benzamides/pharmacology , Binding Sites/drug effects , CHO Cells , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Carbamates/metabolism , Carbamates/pharmacology , Cricetinae , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Endocannabinoids , Enzyme Inhibitors/metabolism , Humans , Inhibitory Concentration 50 , Ligands , Microsomes/enzymology , Microsomes/metabolism , Polyunsaturated Alkamides , Wheat Germ Agglutinins/metabolism , Wheat Germ Agglutinins/pharmacology
20.
Anal Biochem ; 343(1): 143-51, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16018870

ABSTRACT

A novel fluorescent assay to continuously monitor fatty acid amide hydrolase (FAAH) activity that is simple, sensitive, and amenable to high-throughput screening (HTS) of compound libraries is described in this article. Stable Chinese hamster ovary (CHO) cell lines expressing either human FAAH or an inactive mutant, FAAH-S241A, were established. Arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a novel fluorogenic substrate for FAAH, was designed and synthesized. FAAH catalyzes the hydrolysis of AAMCA to generate arachidonic acid and a highly fluorescent 7-amino, 4-methyl coumarin (AMC). The assay was done at 25 degrees C by incubating whole cell or microsomal preparations from FAAH-expressing cells with AAMCA. Release of AMC was monitored continuously using a fluorometer. Microsomal FAAH catalyzed the hydrolysis of AAMCA with an apparent K(m) of 0.48muM and V(max) of 58pmolmin(-1)mgprotein(-1). The assay is specific for FAAH given that microsomes prepared from cells expressing FAAH-S241A or vector alone had no significant activity against AAMCA. Furthermore, the activity was inhibited by URB-597, an FAAH-specific inhibitor, in a concentration-dependent manner with an IC(50) of 33.5nM. The assay was optimized for HTS and had a Z' value ranging from 0.7 to 0.9. The assay is also compatible with ex vivo analysis of FAAH activity.


Subject(s)
Amidohydrolases/chemistry , Arachidonic Acids/chemistry , Biological Assay/methods , Coumarins/chemistry , Fluorescent Dyes/chemistry , Microsomes/enzymology , Amidohydrolases/genetics , Animals , Arachidonic Acids/chemical synthesis , Benzamides/pharmacology , CHO Cells , Carbamates/pharmacology , Coumarins/chemical synthesis , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Fluorescence , Fluorescent Dyes/chemical synthesis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...