Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 19(6): 766-774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38388966

ABSTRACT

Incorporating structural coloured materials in flexible and stretchable elastomeric substrates requires numerous steps that compromise their scalability and economic viability for prospective applications in visual sensors and displays. Here we describe a one-step approach for fabricating plasmonic Ga nanostructures embedded in a polydimethylsiloxane substrate exhibiting tunable chromaticity, in response to mechanical stimuli. The process exploits the capillary interactions between uncrosslinked oligomeric chains of the substrate and Ga metal deposited by thermal evaporation, as elucidated by a theoretical model that we developed. By tuning the oligomer content in polydimethylsiloxane, we attain a range of colours covering a substantial gamut in CIE (Commission Internationale de l'Éclairage) coordinates. This mechanochromic flexible substrate shows reversible response to external mechanical stimuli for ~80,000 cycles. We showcase the capabilities of our processing technique by presenting prototypes of reflective displays and sensors for monitoring body parts, smart bandages and the capacity of the nanostructured film to map force in real time.

2.
Langmuir ; 37(48): 14195-14204, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34802243

ABSTRACT

The spatial variation in the wettability of a surface can have a significant effect on the spreading and retraction behavior of an impacting droplet and hence the overall impact dynamics. Although composite surfaces have proven applications, there is a lack of understanding of droplet impact on surfaces with a sudden jump in wettability. Here, we study the behavior of a liquid drop impacting a composite surface having a superhydrophilic (SHL) spot surrounded by a superhydrophobic (SHB) region. We find that the droplet exhibits different regimes: no-splitting, jetting, and splashing, depending upon the spot size (ßs) and the Weber number (We). At a smaller ßs, the behavior shifts from the stable to jetting regime and then to the splashing regime, with increasing We. We find that by increasing the value of ßs, one can avoid the undesirable splashing and jetting regimes and attain a stable regime even at a higher We. Our study reveals that ßs has a significant influence on the maximum spreading diameter ßmax at a smaller We but a negligible effect at a higher We. We show that the dominance of capillary energy at a smaller We and viscous energy at a higher We underpins the phenomena. We employ an energy conservation approach to develop an analytical model to predict ßmax on a composite SHL-SHB surface by considering the total energy of the system before the impact and at the maximum spread position. We find K = (Re1/2/We) emerges as a key parameter in the model that accurately predicts the experimentally measured ßmax. Our study reveals the existence of an inertia-viscous dominated regime at a smaller K and an inertia-capillary dominated regime at a larger K. The outcome of our study may find applications in stable and precise positioning of impacting droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...