Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(19): 28474-28493, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558342

ABSTRACT

The use of electronic waste in cement concrete as a fibre additive has proven to be very promising for improving mechanical characteristics and developing sustainable construction materials to reduce the waste dumped in landfills. The following study investigated the effect of electronic waste (printed circuit boards (PCBs)) on the mechanical properties of concrete and predicted the same properties with an appropriate machine learning technique. PCB fibres 45 mm in length and 1.5 mm in width were manufactured and added as fibre additions to two sets of concrete mixes with and without silica fume. A 10% volume replacement of cement was substituted with silica fume (SF) to enhance the characteristics of PCB fibre-reinforced concrete and minimize cement consumption. The study included an evaluation of the fresh properties and mechanical characteristics after a 28-day curing period; thereafter, the results were compared and studied using the Levenberg-Marquardt backpropagation algorithm for predictions. The results show that the mechanical properties improved up to a 5% addition of PCB fibres, resulting in strengths of 63.55 MPa and 69.92 MPa for mixtures of PCB5% and SFPCB5%, respectively. A similar trend was achieved for other properties, such as the tensile and flexural strengths. The results of the ANN model predicted values with R2 values ranging from 0.94 to 0.99, indicating the efficacy of the model.


Subject(s)
Construction Materials , Silicon Dioxide , Silicon Dioxide/chemistry , Electronic Waste
2.
J Biosci ; 33(5): 731-42, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19179761

ABSTRACT

Overexpression of epidermal growth factor receptor (EGFR) is a common phenomenon observed in most cancers. Clinical treatment of such cancer involves the use of chemotherapeutic agents such as ge ? tinib and erlotinib which are inhibitors of tyrosine kinase (TK). These small molecules bind to the ATP-binding sites of the TK domain of EGFR.Our in silico analysis suggests that the TK domains of Drosophila and human EGFR are highly conserved. We therefore employed the Drosophila system to validate the in silico observations made with two important anticancer drugs.Since a large number of mutant flies are available,it was possible to investigate the various components of the EGFR/Ras/Raf/MAPK pathways and the phosphorylation status of diphosphorylated extracellular signal-regulated kinase (dp-ERK1/2). These studies confirm the binding of the anilinoquinazolines to the Drosophila EGFR protein and modulation of its activity. Thus,Drosophila appears to be a robust and simple model system for screening newer anticancer drugs that act as TK inhibitors (TKIs).


Subject(s)
Drosophila melanogaster/metabolism , ErbB Receptors/antagonists & inhibitors , Quinazolines/pharmacology , ras Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Biological Assay , Catalytic Domain , Computer Simulation , Drosophila melanogaster/growth & development , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Eye/anatomy & histology , Gefitinib , Gene Expression Regulation/drug effects , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Wings, Animal/abnormalities , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...