Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 20(10): 1953-67, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22760542

ABSTRACT

Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However, due to risks of random integration of the reprogramming transgenes into the host genome, the low efficiency of the process, and the potential risk of virally induced tumorigenicity, alternative methods have been developed to generate pluripotent cells using nonintegrating systems, albeit with limited success. Here, we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors, by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion, they maintain genetic stability, protein level expression of key pluripotency factors, high cell-division kinetics, telomerase activity, repression of X-inactivation, and capacity to differentiate into lineages of the three germ layers, such as definitive endoderm, hepatocytes, bone, fat, cartilage, neurons, and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies, pharmaceutical screening, and disease modeling.


Subject(s)
Amniotic Fluid/drug effects , Histone Deacetylase Inhibitors/pharmacology , Induced Pluripotent Stem Cells/drug effects , Valproic Acid/pharmacology , Amniotic Fluid/cytology , Cell Differentiation , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genome, Human , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Karyotyping , Kinetics , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phenotype , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Sequence Analysis, DNA , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Transgenes , X Chromosome Inactivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...