Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(24): 4901-4910, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38836554

ABSTRACT

In recent years, new methods of generating continuum mid-infrared pulses through filamentation in gases have been developed for ultrafast time-resolved infrared vibrational spectroscopy. The generated infrared pulses can have thousands of wavenumbers of bandwidth, spanning the entire mid-IR region while retaining pulse length below 100 fs. This technology has had a significant impact on problems involving ultrafast structural dynamics in congested spectra with broad features, such as those found in aqueous solutions and molecules with strong intermolecular interactions. This study describes the recent advances in generating and characterizing these pulses and the practical aspects of implementing these sources for broadband detection in transient absorption and 2D IR spectroscopy.

2.
Phys Chem Chem Phys ; 25(40): 27065-27074, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37792449

ABSTRACT

Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.

3.
J Phys Chem A ; 127(18): 4103-4114, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37103479

ABSTRACT

In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to nπC═O* states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed nπC═O* and nσC-I* character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin-orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C-I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N4,5 edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C-I homolysis. By examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C-I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental-theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin-orbit coupled system.

4.
J Chem Phys ; 157(21): 214305, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36511550

ABSTRACT

We have measured, analyzed, and simulated the ground state valence photoelectron spectrum, x-ray absorption (XA) spectrum, x-ray photoelectron (XP) spectrum as well as normal and resonant Auger-Meitner electron (AE) spectrum of oxazole at the carbon, oxygen, and nitrogen K-edge in order to understand its electronic structure. Experimental data are compared to theoretical calculations performed at the coupled cluster, restricted active space perturbation theory to second-order and time-dependent density functional levels of theory. We demonstrate (1) that both N and O K-edge XA spectra are sensitive to the amount of dynamical electron correlation included in the theoretical description and (2) that for a complete description of XP spectra, additional orbital correlation and orbital relaxation effects need to be considered. The normal AE spectra are dominated by a singlet excitation channel and well described by theory. The resonant AE spectra, however, are more complicated. While the participator decay channels, dominating at higher kinetic energies, are well described by coupled cluster theory, spectator channels can only be described satisfactorily using a method that combines restricted active space perturbation theory to second order for the bound part and a one-center approximation for the continuum.

5.
J Chem Phys ; 156(14): 144306, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35428383

ABSTRACT

We employ ultrafast mid-infrared transient absorption spectroscopy to probe the rapid loss of carbonyl ligands from gas-phase nickel tetracarbonyl following ultraviolet photoexcitation at 261 nm. Here, nickel tetracarbonyl undergoes prompt dissociation to produce nickel tricarbonyl in a singlet excited state; this electronically excited tricarbonyl loses another CO group over tens of picoseconds. Our results also suggest the presence of a parallel, concerted dissociation mechanism to produce nickel dicarbonyl in a triplet excited state, which likely dissociates to nickel monocarbonyl. Mechanisms for the formation of these photoproducts in multiple electronic excited states are theoretically predicted with one-dimensional cuts through the potential energy surfaces and computation of spin-orbit coupling constants using equation of motion coupled cluster methods (EOM-CC) and coupled cluster theory with single and double excitations (CCSD). Bond dissociation energies are calculated with CCSD, and anharmonic frequencies of ground and excited state species are computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT).

6.
J Phys Chem A ; 126(5): 710-719, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34939803

ABSTRACT

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.

7.
J Phys Chem A ; 125(45): 9785-9801, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34730957

ABSTRACT

We investigated the reaction of O(3P) with cyclopentene at 4 Torr and 298 K using time-resolved multiplexed photoionization mass spectrometry, where O(3P) radicals were generated by 351 nm photolysis of NO2 and reacted with excess cyclopentene in He under pseudo-first-order conditions. The resulting products were sampled, ionized, and detected by tunable synchrotron vacuum ultraviolet radiation and an orthogonal acceleration time-of-flight mass spectrometer. This technique enabled measurement of both mass spectra and photoionization spectra as functions of time following the initiation of the reaction. We observe propylketene (41%), acrolein + ethene (37%), 1-butene + CO (19%), and cyclopentene oxide (3%), of which the propylketene pathway was previously unidentified experimentally and theoretically. The automatically explored reactive potential energy landscape at the CCSD(T)-F12a/cc-pVTZ//ωB97X-D/6-311++G(d,p) level and the related master equation calculations predict that cyclopentene oxide is formed on the singlet potential energy surface, whereas propylketene is first formed on the triplet surface. These calculations provide evidence that significant intersystem crossing can happen in this reaction not only around the geometry of the initial triplet adduct but also around that of triplet propylketene. The formation of 1-butene + CO is initiated on the triplet surface, with bond cleavage and hydrogen transfer occurring during intersystem crossing to the singlet surface. At present, we are unable to explain the mechanistic origins of the acrolein + ethene channel, and we thus refrain from assigning singlet or triplet reactivity to this channel. Overall, at least 60% of the products result from triplet reactivity. We propose that the reactivity of cyclic alkenes with O(3P) is influenced by their greater effective degree of unsaturation compared with acyclic alkenes. This work also suggests that searches for minimum-energy crossing points that connect triplet surfaces to singlet surfaces should extend beyond the initial adducts.

8.
J Phys Chem A ; 125(36): 7788-7802, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34464533

ABSTRACT

The coupling of inter- and intramolecular vibrations plays a critical role in initiating chemistry during the shock-to-detonation transition in energetic materials. Herein, we report on the subpicosecond to subnanosecond vibrational energy transfer (VET) dynamics of the solid energetic material 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) by using broadband, ultrafast infrared transient absorption spectroscopy. Experiments reveal VET occurring on three distinct time scales: subpicosecond, 5 ps, and 200 ps. The ultrafast appearance of signal at all probed modes in the mid-infrared suggests strong anharmonic coupling of all vibrations in the solid, whereas the long-lived evolution demonstrates that VET is incomplete, and thus thermal equilibrium is not attained, even on the 100 ps time scale. Density functional theory and classical molecular dynamics simulations provide valuable insights into the experimental observations, revealing compression-insensitive time scales for the initial VET dynamics of high-frequency vibrations and drastically extended relaxation times for low-frequency phonon modes under lattice compression. Mode selectivity of the longest dynamics suggests coupling of the N-N and axial NO2 stretching modes with the long-lived, excited phonon bath.

9.
J Chem Phys ; 154(13): 134308, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33832268

ABSTRACT

It is well known that ultraviolet photoexcitation of iron pentacarbonyl results in rapid loss of carbonyl ligands leading to the formation of coordinatively unsaturated iron carbonyl compounds. We employ ultrafast mid-infrared transient absorption spectroscopy to probe the photodissociation dynamics of gas-phase iron pentacarbonyl following ultraviolet excitation at 265 and 199 nm. After photoexcitation at 265 nm, our results show evidence for sequential dissociation of iron pentacarbonyl to form iron tricarbonyl via a short-lived iron tetracarbonyl intermediate. Photodissociation at 199 nm results in the prompt production of Fe(CO)3 within 0.25 ps via several energetically accessible pathways. An additional 15 ps time constant extracted from the data is tentatively assigned to intersystem crossing to the triplet manifold of iron tricarbonyl or iron dicarbonyl. Mechanisms for formation of iron tetracarbonyl, iron tricarbonyl, and iron dicarbonyl are proposed and theoretically validated with one-dimensional cuts through the potential energy surface as well as bond dissociation energies. Ground state calculations are computed at the CCSD(T) level of theory and excited states are computed with EOM-EE-CCSD(dT).

10.
J Phys Chem Lett ; 11(16): 6664-6669, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787226

ABSTRACT

The time scale associated with shock-induced detonation is a key property of energetic materials that remains poorly understood. Herein, we test aspects of one potential mechanism, the phonon up-pumping mechanism, where shock compression excites lattice phonon modes, transferring energy to intramolecular vibrations leading to chemical bond cleavage and reaction. Using ultrafast infrared pump-probe spectroscopy on pentaerythritol tetranitrate (PETN), we reveal sub-picosecond vibrational energy transfer (VET) from the photoexcited band at 1660 cm-1 into every other infrared-active mode in the probed frequency range 800-1800 cm-1. Energy transfer processes remain incomplete at 150 ps. Computational predictions from density functional theory are used in tandem to elucidate VET pathways in PETN.

11.
Phys Chem Chem Phys ; 21(26): 14042-14052, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30652179

ABSTRACT

Ammonia and amines are emitted into the troposphere by various natural and anthropogenic sources, where they have a significant role in aerosol formation. Here, we explore the significance of their removal by reaction with Criegee intermediates, which are produced in the troposphere by ozonolysis of alkenes. Rate coefficients for the reactions of two representative Criegee intermediates, formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) with NH3 and CH3NH2 were measured using cavity ring-down spectroscopy. Temperature-dependent rate coefficients, k(CH2OO + NH3) = (3.1 ± 0.5) × 10-20T2 exp(1011 ± 48/T) cm3 s-1 and k(CH2OO + CH3NH2) = (5 ± 2) × 10-19T2 exp(1384 ± 96/T) cm3 s-1 were obtained in the 240 to 320 K range. Both the reactions of CH2OO were found to be independent of pressure in the 10 to 100 Torr (N2) range, and average rate coefficients k(CH2OO + NH3) = (8.4 ± 1.2) × 10-14 cm3 s-1 and k(CH2OO + CH3NH2) = (5.6 ± 0.4) × 10-12 cm3 s-1 were deduced at 293 K. An upper limit of ≤2.7 × 10-15 cm3 s-1 was estimated for the rate coefficient of the (CH3)2COO + NH3 reaction. Complementary measurements were performed with mass spectrometry using synchrotron radiation photoionization giving k(CH2OO + CH3NH2) = (4.3 ± 0.5) × 10-12 cm3 s-1 at 298 K and 4 Torr (He). Photoionization mass spectra indicated production of NH2CH2OOH and CH3N(H)CH2OOH functionalized organic hydroperoxide adducts from CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. Ab initio calculations performed at the CCSD(T)(F12*)/cc-pVQZ-F12//CCSD(T)(F12*)/cc-pVDZ-F12 level of theory predicted pre-reactive complex formation, consistent with previous studies. Master equation simulations of the experimental data using the ab initio computed structures identified submerged barrier heights of -2.1 ± 0.1 kJ mol-1 and -22.4 ± 0.2 kJ mol-1 for the CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. The reactions of NH3 and CH3NH2 with CH2OO are not expected to compete with its removal by reaction with (H2O)2 in the troposphere. Similarly, losses of NH3 and CH3NH2 by reaction with Criegee intermediates will be insignificant compared with reactions with OH radicals.

12.
Nat Commun ; 9(1): 4343, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341291

ABSTRACT

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces - ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex - which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

13.
Annu Rev Phys Chem ; 67: 41-63, 2016 05 27.
Article in English | MEDLINE | ID: mdl-26980312

ABSTRACT

Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

14.
Science ; 350(6256): 78-82, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26430117

ABSTRACT

Despite decades of study, the structures adopted to accommodate an excess proton in water and the mechanism by which they interconvert remain elusive. We used ultrafast two-dimensional infrared (2D IR) spectroscopy to investigate protons in aqueous hydrochloric acid solutions. By exciting O-H stretching vibrations and detecting the spectral response throughout the mid-IR region, we observed the interaction between the stretching and bending vibrations characteristic of the flanking waters of the Zundel complex, [H(H2O)2](+), at 3200 and 1760 cm(-1), respectively. From time-dependent shifts of the stretch-bend cross peak, we determined a lower limit on the lifetime of this complex of 480 femtoseconds. These results suggest a key role for the Zundel complex in aqueous proton transfer.

15.
Science ; 346(6215): 1348-52, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25504716

ABSTRACT

Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field-induced electron tunneling.

16.
J Chem Phys ; 140(20): 204508, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24880302

ABSTRACT

The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800 and 3500 cm(-1), which is attributed to the strong interactions of the OH(-) ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast transient absorption and 2DIR experiments on aqueous NaOH by exciting the O-H stretch vibrations and probing the response from 1350 to 3800 cm(-1) using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH(-)(H2O)n (n = 17) clusters, reveal that O-H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O-H bonds hydrogen bonded to the ion. Although broad and overlapping spectral features are observed for 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm(-1) peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.

17.
Nat Chem ; 5(11): 935-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24153371

ABSTRACT

The ability of liquid water to dissipate energy efficiently through ultrafast vibrational relaxation plays a key role in the stabilization of reactive intermediates and the outcome of aqueous chemical reactions. The vibrational couplings that govern energy relaxation in H2O remain difficult to characterize because of the limitations of current methods to visualize inter- and intramolecular motions simultaneously. Using a new sub-70 fs broadband mid-infrared source, we performed two-dimensional infrared, transient absorption and polarization anisotropy spectroscopy of H2O by exciting the OH stretching transition and characterizing the response from 1,350 cm(-1) to 4,000 cm(-1). These spectra reveal vibrational transitions at all frequencies simultaneous to the excitation, including pronounced cross-peaks to the bend vibration and a continuum of induced absorptions to combination bands that are not present in linear spectra. These observations provide evidence for strong mixing of inter- and intramolecular vibrations in liquid H2O, and illustrate the shortcomings of traditional relaxation models.


Subject(s)
Water/chemistry , Hydrogen Bonding , Models, Molecular , Thermodynamics , Vibration
18.
J Phys Chem B ; 117(49): 15319-27, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-23638966

ABSTRACT

The vibrational dynamics of liquid water, which result from a complex interplay between internal molecular vibrations and the fluctuating hydrogen bond network, are fundamental to many physicochemical and biological processes. Using a new ultrafast broadband mid-infrared light source with over 2000 cm(-1) of bandwidth, we performed ultrafast time-resolved infrared spectroscopy to study the vibrational couplings and relaxation dynamics of the stretching and bending vibrations of the mixed isotopologue, HOD, in D2O. Analysis of cross-peaks and induced absorptions in the two-dimensional infrared spectrum and transient absorption spectrum shows that the hydroxyl stretch of HOD is coupled to the HOD bending mode via Fermi resonance, with a 70° angle between their transition dipole moments. We see that HOD is also anharmonically coupled to the D2O solvent modes. From transient absorption spectra, we conclude that vibrational relaxation occurs through a number of paths. The strongly hydrogen-bonded OH oscillators have the highest propensity to relax through the bending mode, while the weakly hydrogen bonded oscillators relax through other modes.


Subject(s)
Spectrophotometry, Infrared , Water/chemistry , Deuterium Oxide/chemistry , Hydrogen Bonding , Time Factors
19.
J Chem Phys ; 136(13): 134507, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22482572

ABSTRACT

We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

20.
J Chem Phys ; 135(5): 054509, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823714

ABSTRACT

Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation as it exchanges hydrogen bonding partners. To test this picture of hydrogen bond dynamics, we have performed ultrafast 2D IR spectral anisotropy measurements on the OH stretching vibration of HOD in D(2)O to directly track the reorientation of water molecules as they change hydrogen bonding environments. Interpretation of the experimental data is assisted by modeling drawn from molecular dynamics simulations, and we quantify the degree of molecular rotation on changing local hydrogen bonding environment using restricted rotation models. From the inertial 2D anisotropy decay, we find that water molecules initiating from a strained configuration and relaxing to a stable configuration are characterized by a distribution of angles, with an average reorientation half-angle of 10°, implying an average reorientation for a full switch of ≥20°. These results provide evidence that water hydrogen bond network connectivity switches through concerted motions involving large angle molecular reorientation.


Subject(s)
Spectrophotometry, Infrared , Water/chemistry , Anisotropy , Hydrogen Bonding , Molecular Dynamics Simulation , Spectrophotometry, Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...