Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379377

ABSTRACT

This work highlights the structure and dynamics of two trimeric HA proteins of the H1N1 virus from different origins, the pandemic Californian (HACal) and its closest Indian neighbor (HAInd), reported in 2009 and 2018, respectively. Because of mutation, HAInd acquires new N-glycosylation and epitope binding sites along with mutations at RBD, which might trigger an altered viral-host interaction mechanism. Molecular dynamics simulations performed on HA trimers for a period of 250 ns reveal the highly dynamic nature of HACal trimers inherited by the flexibility of HA monomers. In the trimer, the dynamics of one monomer are more pronounced compared to others, and the enhanced dynamics of RBD especially gain attention as they plays a key role during fusion. Conversely, the mutant HAInd trimer effectively establishes more H-bond interactions, and accordingly, the trimer undergoes more stabilized dynamics with a relatively lower amplitude of RBD dynamics, as endorsed by the reduced RMSD, Rg, and SASA variations. The cooperative and anti-cooperative motions dissected for the subdomains of both strains also reveal a prominent anticorrelative motion of RBD against other subdomains. In agreement, the free energy landscape of stable HAInd is also characterized by a single lowest wide energy basin instead of the two minimum energy basins of the HACal trimer. In essence, the mutant HAInd acquires a highly stable conformation with novel functional features, which calls for (i) further investigation on the emerging mutation-mediated variation in viral-host binding mechanism and (ii) the need for further design of site-specific potential inhibitors to face future challenges.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728538

ABSTRACT

The Influenza flu is a pandemic disease that renders the highest risk factor to the society due to its efficient ability of airborne transmission. Studies on the H1N1 strain gained significant focus, since its pandemic outbreak in 2009 and particularly the computational studies on its structural elements significantly aided in revealing their functional uniqueness. Among the 10 structural proteins of H1N1, the RNA-dependent RNA polymerase (RdRp) heterotrimeric protein complex, which is responsible for the synthesis of viral RNA (vRNA) from the negative-sense RNA genome of the virus, is the focus of the present study. This study aimed to investigate the structural dynamics of the RdRp complex with particular emphasis on the reported 17 mutations. The mutant strain is more stabilized by strong concerted residue-residue interactions at both intra- and inter- monomeric levels. In comparison, the mutant strain is structurally flexible with enhanced stabilizing interactions. The structural dynamics of RdRp are significantly governed by the dynamics of the (i) endonuclease domain of PA, (ii) RNA-entry region of PB1 and (iii) cap-binding region of PB2. Explicitly, the cap binding region of PB2 expresses (i) a concerted motion with the RNA-entry region, along with (ii) an anti-correlated motion with the endonuclease domain of the PA subunit, which further supports the stable dynamics of cap-binding towards RNA binding. These findings contribute to the understanding of the structural dynamics associated with the pandemic and mutant structures of RdRp and render a basic knowledge for further development of novel inhibitors towards influenza flu affected humans.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-18, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37646701

ABSTRACT

NS3-4A, a serine protease, is a primary target for drug development against Hepatitis C Virus (HCV). However, the effectiveness of potent next-generation protease inhibitors is limited by the emergence of mutations and resulting drug resistance. To address this, in this study a structure-based drug design approach is employed to screen a large library of 7320 natural compounds against both wild-type and mutant variants of NS3-4A protease. Telaprevir, a widely used protease inhibitor, was recruited as the control drug. The top 10 compounds with favorable binding affinities underwent drug-likeness evaluation. Based on ADMET studies, complexes of NP_024762 and NP_006776 were selected for molecular dynamic simulations. Principal component analysis (PCA) was employed to explore the conformational space and protein dynamics of the protein-ligand complex using a Free Energy Landscape (FEL) approach. The cosine values obtained from FEL analysis ranged from 0 to 1, and eigenvectors with cosine values below 0.2 were chosen for further analysis. To forecast binding free energies and evaluate energy contributions per residue, the MM-PBSA method was employed. The results highlighted the crucial role of amino acids in the catalytic domain for the binding of the protease with phytochemicals. Stable associations between the top compounds and the target protease were confirmed by the formation of hydrogen bonds in the binding pocket involving residues: His1057, Gly1137, Ser1139, and Ala1157. These findings suggest the potential of these compounds for further validation through biological evaluation.Communicated by Ramaswamy H. Sarma.

4.
Front Mol Biosci ; 10: 1111869, 2023.
Article in English | MEDLINE | ID: mdl-37006623

ABSTRACT

The need for a vaccine/inhibitor design has become inevitable concerning the emerging epidemic and pandemic viral infections, and the recent outbreak of the influenza A (H1N1) virus is one such example. From 2009 to 2018, India faced severe fatalities due to the outbreak of the influenza A (H1N1) virus. In this study, the potential features of reported Indian H1N1 strains are analyzed in comparison with their evolutionarily closest pandemic strain, A/California/04/2009. The focus is laid on one of its surface proteins, hemagglutinin (HA), which imparts a significant role in attacking the host cell surface and its entry. The extensive analysis performed, in comparison with the A/California/04/2009 strain, revealed significant point mutations in all Indian strains reported from 2009 to 2018. Due to these mutations, all Indian strains disclosed altered features at the sequence and structural levels, which are further presumed to be associated with their functional diversity as well. The mutations observed with the 2018 HA sequence such as S91R, S181T, S200P, I312V, K319T, I419M, and E523D might improve the fitness of the virus in a new host and environment. The higher fitness and decreased sequence similarity of mutated strains may compromise therapeutic efficacy. In particular, the mutations observed commonly, such as serine-to-threonine, alanine-to-threonine, and lysine-to-glutamine at various regions, alter the physico-chemical features of receptor-binding domains, N-glycosylation, and epitope-binding sites when compared with the reference strain. Such mutations render diversity among all Indian strains, and the structural and functional characterization of these strains becomes inevitable. In this study, we observed that mutational drift results in the alteration of the receptor-binding domain, the generation of new variant N-glycosylation along with novel epitope-binding sites, and modifications at the structural level. Eventually, the pressing need to develop potentially distinct next-generation therapeutic inhibitors against the HA strains of the Indian influenza A (H1N1) virus is also highlighted here.

5.
Front Mol Biosci ; 10: 1106128, 2023.
Article in English | MEDLINE | ID: mdl-36911525

ABSTRACT

The viral disease dengue is transmitted by the Aedes mosquito and is commonly seen to occur in the tropical and subtropical regions of the world. It is a growing public health concern. To date, other than supportive treatments, there are no specific antiviral treatments to combat the infection. Therefore, finding potential compounds that have antiviral activity against the dengue virus is essential. The NS2B-NS3 dengue protease plays a vital role in the replication and viral assembly. If the functioning of this protease were to be obstructed then viral replication would be halted. As a result, this NS2B-NS3 proves to be a promising target in the process of anti-viral drug design. Through this study, we aim to provide suggestions for compounds that may serve as potent inhibitors of the dengue NS2B-NS3 protein. Here, a ligand-based pharmacophore model was generated and the ZINC database was screened through ZINCPharmer to identify molecules with similar features. 2D QSAR model was developed and validated using reported 4-Benzyloxy Phenyl Glycine derivatives and was utilized to predict the IC50 values of unknown compounds. Further, the study is extended to molecular docking to investigate interactions at the active pocket of the target protein. ZINC36596404 and ZINC22973642 showed a predicted pIC50 of 6.477 and 7.872, respectively. They also showed excellent binding with NS3 protease as is evident from their binding energy of -8.3and -8.1 kcal/mol, respectively. ADMET predictionsofcompounds have shown high drug-likeness. Finally, the molecular dynamic simulations integrated with MM-PBSA binding energy calculations confirmedboth identified ZINC compounds as potential hit moleculeswith good stability.

6.
Sci Rep ; 12(1): 18872, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344599

ABSTRACT

Polymorphisms of Thiopurine S-methyltransferase (TPMT) are known to be associated with leukemia, inflammatory bowel diseases, and more. The objective of the present study was to identify novel deleterious missense SNPs of TPMT through a comprehensive in silico protocol. The initial SNP screening protocol used to identify deleterious SNPs from the pool of all TPMT SNPs in the dbSNP database yielded an accuracy of 83.33% in identifying extremely dangerous variants. Five novel deleterious missense SNPs (W33G, W78R, V89E, W150G, and L182P) of TPMT were identified through the aforementioned screening protocol. These 5 SNPs were then subjected to conservation analysis, interaction analysis, oncogenic and phenotypic analysis, structural analysis, PTM analysis, and molecular dynamics simulations (MDS) analysis to further assess and analyze their deleterious nature. Oncogenic analysis revealed that all five SNPs are oncogenic. MDS analysis revealed that all SNPs are deleterious due to the alterations they cause in the binding energy of the wild-type protein. Plasticity-induced instability caused by most of the mutations as indicated by the MDS results has been hypothesized to be the reason for this alteration. While in vivo or in vitro protocols are more conclusive, they are often more challenging and expensive. Hence, future research endeavors targeted at TPMT polymorphisms and/or their consequences in relevant disease progressions or treatments, through in vitro or in vivo means can give a higher priority to these SNPs rather than considering the massive pool of all SNPs of TPMT.


Subject(s)
Computational Biology , Methyltransferases , Humans , Genotype , Methyltransferases/genetics , Molecular Dynamics Simulation , Mutation , Polymorphism, Single Nucleotide
7.
J Biomol Struct Dyn ; 37(3): 796-810, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29447078

ABSTRACT

The liver kinase B1 (LKB1) is encoded by LKB1 gene. Several pathogenic mutations of LKB1 causing Peutz-Jeghers syndrome and also cancers in breast, gastric, pancreas, and colon have been reported. The present study is focused to analyze the effects on the structural dynamics of LKB1 caused by the 4 pathogenic missense mutations (L67P, L182P, G242V, and R297S), which are reported to reduce the catalytic activity. In this study, the structural changes of LKB1 in apo- and in heterotrimeric complex (LKB1-STRADα-MO25α) form with wild and mutated LKB1 are investigated using all atomistic molecular dynamic simulation. The present study reveals that these four mutations initiate local structural distortions and the solvent accessibility of the surrounding regions of ATP-binding pocket such as glycine-rich loop, αB and αC loop, activation and catalytic loops. The mutations of L67P, L182P, and G242 V induce distortions of the secondary structure of ß1-ß3 sheets, π - π interaction (observed between Phe204 of LKB1 and Phe243 of MO25α), and increase the helical properties (both helical twist and length) of the adjacent αH-helix, respectively. The active kinase features like the conformation of catalytic and activation loops, salt bridge and, finally, the formation of stable R- and C-hydrophobic spines are also found to be perturbed by these mutations. Hence, the observed mutation-induced structural distortions fail to coordinate the essential binding nature of LKB1 with STRADα and MO25α, which eventually affects the native function of LKB1. These observations are in line with the experimentally reported reduced kinase activity of LKB1.


Subject(s)
Mutation, Missense/genetics , Peutz-Jeghers Syndrome/enzymology , Peutz-Jeghers Syndrome/genetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Binding Sites , Humans , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Static Electricity
8.
J Biomol Struct Dyn ; 37(4): 877-891, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29455637

ABSTRACT

By virtue of their regulatory role in the biological process, certain protein-protein complexes form potential targets for designing and discovery of drugs. Alteration set in the controlled formation of such complexes results in dysregulation of several metabolic processes, leading to diseased condition. ß-catenin/Tcf4 complex is one such protein-protein complex found altered in colorectal epithelial cells resulting in activation of target genes leading to cancer. Recently, certain lignans from seeds of the oil crop sesame were found inhibiting initiation and progression of this type of cancer. Molecular mechanism involved in the process, however, is not yet known. By an in silico study, we present here a possible mechanism of interaction between the sesame lignans and ß-catenin leading to inhibition of formation of the said complex, thereby elevating some of these ligands as potential lead molecules in the development of drugs for treatment of colon cancer. To achieve this objective, we performed docking, molecular dynamics simulation, and binding free energy analysis of target-ligand complexes. Using computational alanine scanning approach, the key pocket residues of ß-catenin that interact with Tcf4 in the formation of complex were identified. The test molecules were initially evaluated for their drug-like properties by application of Lipinski's rule of five. Results of this study revealed that Sesamin, a furofuran lignan from sesame, has the highest affinity for ß-catenin particularly with its residues that interact with Tcf4 and thus serving as a potential lead molecule for development of a drug for colon cancer.


Subject(s)
Colonic Neoplasms , Computer Simulation , Dioxoles/metabolism , Lignans/metabolism , Transcription Factor 4/metabolism , beta Catenin/metabolism , Binding Sites , Dioxoles/chemistry , Humans , Lignans/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation , Transcription Factor 4/chemistry , beta Catenin/chemistry
9.
Comput Biol Chem ; 76: 67-78, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29982165

ABSTRACT

LKB1 protein is involved in the regulation of cell polarity by phosphorylating the AMPK under energetic stress conditions. LKB1 protein is expressed in both cytoplasm and nucleus. In the nucleus, LKB1 interacts with orphan nuclear receptor protein Nur77. It is reported that the interaction of LKB1 with Nur77 is disrupted by the small molecular ligand TMPA (ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate), such that the LKB1 is enabled to play its role in cytoplasm and further to regulate/reduce the blood glucose level. In the present study, atomistic molecular dynamics simulations are performed to understand the dissociation mechanism of Nur77-LKB1 complex. The present study reveals that TMPAs induce an open-close motion of Nur77 which further decrease the stability of Nur77-LKB1 complex. As a consequence, the interface region in LKB1-Nur77 complex is more exposed for solvation and further releases the interactions existing between Nur77 and LKB1. Altogether, this study explains the TMPAs mediated Nur77-LKB1 complex dissociation.


Subject(s)
Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Phenylacetates/metabolism , Protein Multimerization/drug effects , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry , Phenylacetates/chemistry , Principal Component Analysis , Protein Binding , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Thermodynamics
10.
J Biomol Struct Dyn ; 36(4): 1075-1093, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28330421

ABSTRACT

One of the multitasking proteins, transactive response DNA-binding protein 43 (tdp43) plays a key role in RNA regulation and the two pathogenic mutations such as D169G and K263E, located at the RNA Recognition Motif (RRM) of tdp43, are reported to cause neurological disorders such as Amyotrophic Lateral Sclerosis and FrontoTemporal Lobar Degeneration. As the exploration of the proteinopathy demands both structural and functional characterizations of mutants, a comparative analysis on the wild type and mutant tdp43 (D169G and K263E) and their complexes with RNA has been performed using computational approaches. Molecular dynamics simulations revealed comparatively stable mutant structures compared to wild type tdp43. Both mutants show lesser binding affinity toward RNA molecule when compared to the wild type tdp43. Some of the observed features, including the increased solvent-accessible surface area, conformational flexibility as well as unfolding of tdp43, and the altered RNA conformation in tp43-RNA complex, reveal the susceptibility of these mutants to induce conformational changes in tdp43 for a possible aggregation in the cytoplasm. Particularly, the enhanced aggregation propensity of both mutants also evidences the higher probability of cytoplasmic aggregation of tdp43 mutants. Hence, the present analysis highlighting the structural and functional aspects of wild and mutant tdp43 will form the basis to gain insight into the proteinopathy of tdp43 and the related structure-based drug discovery. Thus, tdp43 can be used as target to develop novel therapeutic approaches or drug designing.


Subject(s)
DNA-Binding Proteins/genetics , Nervous System Diseases/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/chemistry , Humans , Molecular Dynamics Simulation , Mutation , Nervous System Diseases/pathology , Protein Binding , RNA Recognition Motif/genetics , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology
11.
J Chem Theory Comput ; 13(10): 5028-5038, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28742346

ABSTRACT

Xylo-nucleic acid (XyloNA) is a synthetic analogue of ribo-nucleic acid (RNA), where the ribose sugar has been replaced by xylose. We present a molecular dynamics study of the conformational evolution of XyloNA double strand oligomers derived from A-RNA through the substitution of ß-d-ribofuranose by ß-d-xylofuranose and having lengths of 8, 16, and 29 base pairs, using a set of independent all-atom simulations performed at various time scales ranging from 55 to 100 ns, with one long 500 ns simulation of the 29-mer. In order to validate the robustness of XyloNA conformation, a set of simulations using various cutoff distances and solvation box dimensions has also been performed. These independent simulations reveal the uncoiling or elongation of the initial conformation to form an open ladder type transient state conformation and the subsequent formation of a highly flexible duplex with a tendency to coil in a left-handed fashion. The observed open ladder conformation is in line with recently obtained NMR data on the XyloNA 8-mer derived using 5'-d(GUGUACAC)-3'. The observed negative interbase pair twist leads to the observed highly flexible left-handed duplex, which is significantly less rigid than the stable left-handed dXyloNA duplex having a strong negative twist. A comparison between the xylo-analogues of DNA and RNA shows a clear distinction between the helical parameters, with implications for the pairing mechanism.


Subject(s)
Molecular Dynamics Simulation , RNA/chemistry , Nucleic Acid Conformation
12.
Mol Biosyst ; 13(9): 1728-1743, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28714502

ABSTRACT

The recognition and binding of nucleic acids by ORF1p, an L1 retrotransposon protein, have not yet been clearly understood due to the lack of structural knowledge. The present study attempts to identify the probable single-stranded RNA binding pathway of trimeric ORF1p using computational methods like ligand mapping methodology combined with molecular dynamics simulations. Using the ligand mapping methodology, the possible RNA interacting sites on the surface of the trimeric ORF1p were identified. The crystal structure of the ORF1p timer and an RNA molecule of 29 nucleotide bases in length were used to generate the structure of the ORF1p complex based on information on predicted binding sites as well as the functional states of the CTD. The various complexes of ORF1p-RNA were generated using polyU, polyA and L1RNA sequences and were simulated for a period of 75 ns. The observed stable interaction pattern was used to propose the possible binding pathway. Based on the binding free energy for complex formation, both polyU and L1RNA complexes were identified as stable complexes, while the complex formed with polyA was the least stable one. Furthermore, the importance of the residues in the CC domain (Lys137 and Arg141), the RRM loop (Arg206, Arg210 and Arg211) and the CTD (Arg 261 and Arg262) of all three chains in stabilizing the wrapped RNA has been highlighted in this study. The presence of several electrostatic interactions including H-bond interactions increases the affinity towards RNA and hence plays a vital role in retaining the wrapped position of RNA around ORF1p. Altogether, this study presents one of the possible RNA binding pathways of ORF1p and clearly highlights the functional state of ORF1p visited during RNA binding.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Binding Proteins/chemistry , RNA/chemistry , Algorithms , Humans , Hydrogen Bonding , Nucleic Acid Conformation , Principal Component Analysis , Protein Conformation , Protein Multimerization , RNA/metabolism , RNA-Binding Proteins/metabolism , Static Electricity , Structure-Activity Relationship
13.
J Mol Graph Model ; 76: 43-55, 2017 09.
Article in English | MEDLINE | ID: mdl-28704776

ABSTRACT

Biomolecular recognition of proteins and nucleic acids is mainly mediated by their structural features and the molecular dynamics simulations approach has been used to explore this recognition processes at the atomic level. L1-Endonuclease, an enzyme involved in L1 retrotransposition, cleaves the TA junction DNA (5'-TTTT/AA-3') and expresses high specificity for target site recognition. The present study highlights the structural features of L1-endonuclease as well as DNA responsible for such specific recognition. Especially, the importance of ßB6-B5 hairpin loop in DNA recognition has been elucidated by analyzing the dynamics of Thr192 mutated L1-endonuclease. In addition, simulations of the endonuclease complexed with DNA substrates (sequences having TA and CG junctions) revealed the specificity of L1 endonuclease towards TA junction. Molecular dynamics simulations revealed that the ßB6-B5 hairpin loop protrudes well into the minor groove of DNA having TA junction and induces DNA bending such that the width of minor groove is increased. Such endonuclease induced bending of TA junction DNA sequence positions the scissile phosphodiester bond of DNA for cleavage. The innate property of minor groove widening in TA junction than in CG junction is utilized by the ßB6-ßB5 hairpin loop of endonuclease while recognizing the DNA sequences. The present study also highlights the role of Mg2+ cation in catalysis and attempts to explore the possible target site DNA cleavage mechanism.


Subject(s)
Endonucleases/metabolism , Nucleic Acids/metabolism , Binding Sites/physiology , DNA/metabolism , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , Substrate Specificity
14.
Eur Biophys J ; 46(5): 471-484, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27933430

ABSTRACT

Post translational modifications have a profound role in the regulation of several biological processes such as transcription, replication, and DNA repair. Acetylation and phosphorylation form a major class of post translational modifications involved in nucleosomal regulation by modifying its structure. The effect of post translational modifications on nucleosome structure could be better explored when the molecular trajectories explaining the time dependent structural evolution over a period of time is examined at the atomic level. The present study attempts to highlight the importance of acetylation, especially at entry-exit (Lys56) and dyad (Lys115 and Lys122) regions in regulating the nucleosome accessibility and mobility using all atom simulations. It is evident from this study that acetylation at Lys56, Lys115, and Lys122 introduces local changes in the electrostatic nature of the lateral surface and thereby weakens the histone-DNA interactions. In addition, simulations also reveal significant changes in the dynamics of superhelical DNA. The acetylation at Lys56 promotes a high amplitude out-of-planar movement of entry-exit termini. Whereas, acetylation at Lys115 and Lys122 increases the flexibility of the superhelical DNA to facilitate the rolling of the superhelical DNA around the octameric histone. In essence, the present study highlights the role of acetylation at Lys56, Lys115, and Lys122 in transcriptional regulation by promoting high amplitude dynamics of superhelical DNA for a possible unwrapping as well as mobility of nucleosome.


Subject(s)
Histones/chemistry , Histones/metabolism , Lysine/metabolism , Nucleosomes/metabolism , Acetylation , Molecular Dynamics Simulation , Protein Multimerization , Protein Stability , Protein Structure, Quaternary , Thermodynamics
15.
J Biomol Struct Dyn ; 35(16): 3469-3485, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27835934

ABSTRACT

Retroviral integrases are reported to form alternate dimer assemblies like the core-core dimer and reaching dimer. The core-core dimer is stabilized predominantly by an extensive interface between two catalytic core domains. The reaching dimer is stabilized by N-terminal domains that reach to form intermolecular interfaces with the other subunit's core and C-terminal domains (CTD), as well as CTD-CTD interactions. In this study, molecular dynamics (MD), Brownian dynamics (BD) simulations, and free energy analyses, were performed to elucidate determinants for the stability of the reaching dimer forms of full-length Avian Sarcoma Virus (ASV) and Human Immunodeficiency Virus (HIV) IN, and to examine the role of the C-tails (the last ~16-18 residues at the C-termini) in their structural dynamics. The dynamics of an HIV reaching dimer derived from small angle X-ray scattering and protein crosslinking data, was compared with the dynamics of a core-core dimer model derived from combining the crystal structures of two-domain fragments. The results showed that the core domains in the ASV reaching dimer express free dynamics, whereas those in the HIV reaching dimer are highly stable. BD simulations suggest a higher rate of association for the HIV core-core dimer than the reaching dimer. The predicted stability of these dimers was therefore ranked in the following order: ASV reaching dimer < HIV reaching dimer < composite core-core dimer. Analyses of MD trajectories have suggested residues that are critical for intermolecular contacts in each reaching dimer. Tests of these predictions and insights gained from these analyses could reveal a potential pathway for the association and dissociation of full-length IN multimers.


Subject(s)
Avian Sarcoma Viruses/chemistry , HIV Integrase/chemistry , HIV-1/chemistry , Molecular Dynamics Simulation , Protein Multimerization , Amino Acid Motifs , Avian Sarcoma Viruses/enzymology , Catalytic Domain , Crystallography, X-Ray , HIV-1/enzymology , Kinetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Thermodynamics
16.
J Biomol Struct Dyn ; 35(5): 1138-1152, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27160967

ABSTRACT

LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (ß1-ß2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Vesicular Transport/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases/chemistry , AMP-Activated Protein Kinases , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acids , Animals , Binding Sites , Calcium-Binding Proteins , Catalytic Domain , Hydrogen Bonding , Mice , Protein Binding , Protein Conformation , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Quantitative Structure-Activity Relationship
17.
Adv Bioinformatics ; 2016: 8792814, 2016.
Article in English | MEDLINE | ID: mdl-27110240

ABSTRACT

The human Argonaute2 protein (Ago2) is a key player in RNA interference pathway and small RNA recognition by Ago2 is the crucial step in siRNA mediated gene silencing mechanism. The present study highlights the structural and functional dynamics of human Ago2 and the interaction mechanism of Ago2 with a set of seven siRNAs for the first time. The human Ago2 protein adopts two conformations such as "open" and "close" during the simulation of 25 ns. One of the domains named as PAZ, which is responsible for anchoring the 3'-end of siRNA guide strand, is observed as a highly flexible region. The interaction between Ago2 and siRNA, analyzed using a set of siRNAs (targeting at positions 128, 251, 341, 383, 537, 1113, and 1115 of mRNA) designed to target tdp43 mutants causing Amyotrophic Lateral Sclerosis (ALS) disease, revealed the stable and strong recognition of siRNA by the Ago2 protein during dynamics. Among the studied siRNAs, the siRNA341 is identified as a potent siRNA to recognize Ago2 and hence could be used further as a possible siRNA candidate to target the mutant tdp43 protein for the treatment of ALS patients.

18.
Comput Biol Chem ; 61: 97-108, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26854610

ABSTRACT

The DNA binding protein, TDP43 is a major protein involved in amyotrophic lateral sclerosis and other neurological disorders such as frontotemporal dementia, Alzheimer disease, etc. In the present study, we have designed possible siRNAs for the glycine rich region of tardbp mutants causing ALS disorder based on a systematic theoretical approach including (i) identification of respective codons for all mutants (reported at the protein level) based on both minimum free energy and probabilistic approaches, (ii) rational design of siRNA, (iii) secondary structure analysis for the target accessibility of siRNA, (iii) determination of the ability of siRNA to interact with mRNA and the formation/stability of duplex via molecular dynamics study for a period of 15ns and (iv) characterization of mRNA-siRNA duplex stability based on thermo-physical analysis. The stable GC-rich siRNA expressed strong binding affinity towards mRNA and forms stable duplex in A-form. The linear dependence between the thermo-physical parameters such as Tm, GC content and binding free energy revealed the ability of the identified siRNAs to interact with mRNA in comparable to that of the experimentally reported siRNAs. Hence, this present study proposes few siRNAs as the possible gene silencing agents in RNAi therapy based on the in silico approach.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mutation , RNA, Small Interfering/genetics , Computer Simulation , Molecular Dynamics Simulation
19.
Comput Struct Biotechnol J ; 13: 329-38, 2015.
Article in English | MEDLINE | ID: mdl-25987966

ABSTRACT

DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46-80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed ß-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

20.
Adv Protein Chem Struct Biol ; 90: 119-49, 2013.
Article in English | MEDLINE | ID: mdl-23582203

ABSTRACT

Elucidation of the structural dynamics of a nucleosome is of primary importance for understanding the molecular mechanisms that control the nucleosomal positioning. The presence of variant histone proteins in the nucleosome core raises the functional diversity of the nucleosomes in gene regulation and has the profound epigenetic consequences of great importance for understanding the fundamental issues like the assembly of variant nucleosomes, chromatin remodeling, histone posttranslational modifications, etc. Here, we report our observation of the dominant mechanisms of relaxation motions of the oligonucleosomes such as dimer, trimer, and tetramer (in the beads on a string model) with conventional core histones and role of variant histone H2A.Z in the chromatin dynamics using normal mode analysis. Analysis of the directionality of the global dynamics of the oligonucleosome reveals (i) the in-planar stretching as well as out-of-planar bending motions as the relaxation mechanisms of the oligonucleosome and (ii) the freedom of the individual nucleosome in expressing the combination of the above-mentioned motions as the global mode of dynamics. The highly dynamic N-termini of H3 and (H2A.Z-H2B) dimer evidence their participation in the transcriptionally active state. The key role of variant H2A.Z histone as a major source of vibrant motions via weaker intra- and intermolecular correlations is emphasized in this chapter.


Subject(s)
Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Animals , Chromatin Assembly and Disassembly , Dimerization , Histones/analysis , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...