Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
GM Crops Food ; 3(3): 163-74, 2012.
Article in English | MEDLINE | ID: mdl-22688692

ABSTRACT

We consider using non-host plants that express both a toxin and oviposition deterrence for to increase stability for insect resistance management. The two traits reinforce each other ecologically. We used a two-gene model to evaluate this combination of traits. When toxin resistance was recessive or partially recessive, even moderate levels of oviposition deterrence extended time to resistance. When sensitivity to oviposition deterrence started at a low frequency (0.001) selection pressure from the toxin caused the frequency of the gene for sensitivity to oviposition deterrence to increase and the time to resistance was extended beyond the 150-y timeline of the simulations. Even in the worst-case scenario, when toxin resistance was dominant, oviposition deterrence extended time to resistance up to 150 y. The genes for toxin and sensitivity to oviposition deterrence support each other ecologically to prevent resistance from developing to either trait. This creates a more stable insect resistance management strategy.


Subject(s)
Insecta/physiology , Insecticide Resistance , Oviposition/genetics , Pest Control, Biological , Plants, Genetically Modified , Plants/genetics , Agriculture , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Phenotype , Plants/parasitology , Time Factors , Transgenes
2.
Naturwissenschaften ; 96(5): 621-4, 2009 May.
Article in English | MEDLINE | ID: mdl-19122992

ABSTRACT

Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of L-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.


Subject(s)
Diet , Moths/physiology , Phosphodiesterase Inhibitors/pharmacology , Saccharin/pharmacology , Sodium Glutamate/metabolism , Adenylyl Cyclases/metabolism , Aminobutyrates/metabolism , Animal Feed , Animals , Aspartic Acid/pharmacology , Enzyme Activation , Larva/drug effects , Larva/physiology , Moths/growth & development , Signal Transduction/drug effects , Signal Transduction/physiology , Taste , Type C Phospholipases/antagonists & inhibitors
3.
J Invertebr Pathol ; 99(1): 35-42, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18621386

ABSTRACT

Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode's mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of bacterial growth could explain differences in CO2 production over the course of host infection. Growth of Xenorhabdus cabanillasii isolated from Steinernema riobrave exhibited the characteristic exponential and stationary growth phases. Other non-nematode symbiotic bacteria were also found in infected hosts and exhibited similar growth patterns to X. cabanillasii. Galleria mellonella larvae infected with S. riobrave produced two distinct peaks of CO2 occurring at 25.6-36 h and 105-16 h post-infection, whereas larvae injected with X. cabanillasii alone showed only one peak of CO2, occurring at 22.8-36.2h post-injection. Tenebrio molitor larvae infected with S. riobrave or injected with bacteria alone exhibited only one peak of CO2 production, which occurred later during S. riobrave infection (41.4-64.4h post-infection compared to 20.4-35.9h post-injection). These results indicate a relationship between bacterial growth and the first peak of CO2 in both host species, but not for the second peak exhibited in G. mellonella.


Subject(s)
Carbon Dioxide/metabolism , Insect Control/methods , Lepidoptera/parasitology , Nematoda/physiology , Symbiosis/physiology , Xenorhabdus/physiology , Animals , Host-Pathogen Interactions , Lepidoptera/microbiology
4.
J Insect Physiol ; 54(2): 358-66, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18036609

ABSTRACT

Insect oocytes sequester nutritive proteins from the hemolymph under the regulation by juvenile hormone (JH), in a process called patency. Here, a pharmacological approach was used to decipher the role for calcium in ovarial patency in the moth, Heliothis virescens. Follicular epithelial cells were exposed in calcium-free or calcium-containing media to JH I, JH II or JH III alone, or in combination with various inhibitors of signal transduction. Protein kinase inhibitors, Na(+)/K(+) -ATPase inhibitor, ouabain, an inhibitor of voltage-dependent calcium channels in plasma membrane, omega-Conotoxin MVII, endoplasmic reticulum (ER) Ca(2+) -ATPase inhibitor, thapsigargin, ER inositol 1,4,5-triphosphate receptor (IP(3)R) inhibitor, 2-ABP and ER ryanodine receptor (RyR) inhibitor, ryanodine, were used. The results of our study suggest that JH II evokes patency via protein kinase C-dependent signaling pathway, and activation of Na(+)/K(+) -ATPase, similar to JH III. Response to JH II and JH III predominantly relies upon external and internal calcium stores, using voltage-dependent calcium channels, IP(3)Rs and RyRs. In contrast, regulation of patency by JH I appears to be largely calcium independent, and the calcium-dependent component of the signaling pathway likely does not use IP(3)Rs, but RyRs only. The JH II, JH III and calcium-dependent component of JH I signaling pathway probably utilize calcium/calmodulin-dependent kinase II for activation of Na(+)/K(+) -ATPase.


Subject(s)
Calcium/metabolism , Moths/physiology , Ovary/physiology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Boron Compounds/pharmacology , Calcium/pharmacology , Dose-Response Relationship, Drug , Female , Juvenile Hormones/pharmacology , Moths/drug effects , Ovary/drug effects , Protein Kinase Inhibitors/pharmacology , Ryanodine/pharmacology , Thapsigargin/pharmacology , omega-Conotoxins/pharmacology
5.
J Insect Physiol ; 53(3): 274-84, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17258230

ABSTRACT

Ecdysteroids and juvenile hormones (JHs) regulate many physiological events throughout the insect life cycle, including molting, metamorphosis, ecdysis, diapause, reproduction, and behavior. Fluctuation of whitefly ecdysteroid levels and the identity of the whitefly molting hormone (20-hydroxyecdysone) have only been reported within the last few years. An ecdysteroid commitment peak that is associated with the reprogramming of tissues for a metamorphic molt in many holometabolous and some hemimetabolous insect species was not observed in last nymphal instars of either the sweet potato whitefly, Bemisia tabaci (Biotype B), or the greenhouse whitefly, Trialeurodes vaporariorum. Ecdysteroids reach peak levels 1-2 days prior to the initiation of the nymphal-adult metamorphic molt. Adult eye and wing differentiation which signal the onset of this molt begin earlier in 4th instar T. vaporariorum (Stages 4 and 5, respectively) than in B. tabaci (Stage 6), and the premolt peak is 3-4 times greater in B. tabaci ( approximately 400 fg/microg protein) than in T. vaporariorum ( approximately 120 fg/microg protein). The JH of B. tabaci nymphs and eggs was found to be JH III, supporting the view that JHs I and II are, with rare exception, only present in lepidopteran insects. In B. tabaci eggs, JH levels were approximately 10 times greater on day 2/3 (0.44 fg/egg or 0.54 ng/g) than on day 5 (0.04 fg/egg or 0.054 ng/g) post-oviposition. Approximately, 1.4 fg/2nd-3rd instar nymph (0.36 ng/g) was detected. It is probable that the relatively high level of JH in day 2/3 eggs is associated with the differentiation of various whitefly tissues during embryonic development.


Subject(s)
Ecdysteroids/metabolism , Hemiptera/metabolism , Insect Vectors/metabolism , Juvenile Hormones/metabolism , Metamorphosis, Biological/physiology , Animals , Hemiptera/physiology , Species Specificity
6.
J Invertebr Pathol ; 94(1): 64-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17054978

ABSTRACT

The quality of an insect as a host to an entomopathogenic nematode infective juvenile depends in part on whether or not the insect is already infected and on the stage of that infection. Previous research has shown that nematode response to hosts can change after infection and that, for uninfected hosts, CO(2) can be an important cue used by infective stage juveniles during attraction. We hypothesized that CO(2) production from an insect changes after it is infected, and that these changes could influence nematode infection decisions. Changes in CO(2) released by two insect species (Galleria mellonella and Tenebrio molitor) after infection by one of four nematode species (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, or Steinernema riobrave) were measured. Measurements were taken every 2h from time of initial exposure to nematodes up to 224 h after infection. Dead (freeze-killed) and live uninfected insects were used as controls. Infected G. mellonella showed two distinct peaks of CO(2) production: one between 20 and 30 h and the other between 70 and 115 h after exposure to the nematodes. Peaks were up to two times higher than levels produced by uninfected insects. Infected T. molitor showed only one peak between 25 and 50h. We found differences in peak height and timing among nematode and insect species combinations. The influence of these changes in CO(2) production on IJ attraction and infection behavior remains to be determined.


Subject(s)
Carbon Dioxide/metabolism , Lepidoptera/parasitology , Rhabditida/physiology , Tenebrio/parasitology , Animals , Lepidoptera/metabolism , Tenebrio/metabolism , Time Factors
7.
J Insect Physiol ; 52(8): 786-94, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16806257

ABSTRACT

The storage of large quantities of juvenile hormone (JH) in male abdomens is a phenomenon known from some species of moths. Juvenile hormone, stored in male accessory sex glands (ASG), may be transferred to the female during copulation, but the physiological significance of the JH transfer remains unclear. Here, using the moth Heliothis virescens as a model, we show that JH transferred from male to the promiscuous female promotes JH synthesis and egg development in the female. We propose that this explains the functional significance of JH transfer in species that exhibit last male sperm precedence, and that this hormone acts as a bioactive substance which the first male to mate uses for co-opting and regulating the female's gonadotropic mechanisms, thereby ensuring that despite last male sperm precedence he will sire a significant number of viable offspring.


Subject(s)
Copulation/physiology , Juvenile Hormones/physiology , Moths/physiology , Animals , Female , Male , Spermatozoa/physiology
8.
Arch Insect Biochem Physiol ; 62(1): 11-25, 2006 May.
Article in English | MEDLINE | ID: mdl-16612808

ABSTRACT

The mating-induced increase in juvenile hormone (JH) biosynthesis in Heliothis virescens females may be stimulated by production and/or release of stimulatory neuropeptides such as allatotropins (AT). Although there is evidence that H. virescens allatotropin may be structurally related to Manduca sexta allatotropin (Manse-AT), little is known of its occurrence and distribution in H. virescens. An enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody against Manse-AT was used to quantify concentrations of Manse-AT immunoreactivity in tissue extracts of H. virescens. In mated females, the highest concentrations of Manse-AT-like material occurred in the brain. The ventral nervous system and the accessory glands also contained considerable amounts of Manse-AT-like material, whereas concentrations were very low in ovaries, fat body, and flight muscle. The Manse-AT antibody was used for whole-mount immunocytochemistry to localize Manse-AT-immunoreactivity in the central nervous system. Several groups of Manse-AT-immunoreactive cells were discovered in the brain, subesophageal ganglion, and thoracic and abdominal ganglia of H. virescens females and males. Strong immunoreactivity was detected in axons going through the corpora cardiaca and branching out over the surface of the corpora allata. The presence of Manse-AT-like material in various locations in the central nervous system suggests that these peptides may have other as yet unknown functions. At the posterior margin of the terminal ganglion of males, a group of large immunoreactive cells was observed that was not present in females. Other than that, there were no obvious differences between virgin and mated females or males. The lack of differences in AT distribution in mated and virgin females suggests that mating-induced differences in female JH biosynthesis rates may be caused by changes in cellular response to AT at the level of the CA, rather than by changes in the amounts of AT acting on the CA.


Subject(s)
Insect Hormones/analysis , Insect Hormones/metabolism , Moths/metabolism , Neuropeptides/analysis , Neuropeptides/metabolism , Animals , Brain/anatomy & histology , Brain/metabolism , Copulation/physiology , Enzyme-Linked Immunosorbent Assay , Fat Body/metabolism , Female , Ganglia/metabolism , Immunohistochemistry , Male , Muscle, Skeletal/metabolism , Neurons/metabolism , Organ Specificity , Ovary/metabolism , Protein Transport , Sex Characteristics , Time Factors
9.
Pharmacol Biochem Behav ; 82(4): 678-85, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16364414

ABSTRACT

Feeding in codling moth caterpillars was induced by the general glutamate receptor activator monosodium glutamate (MSG) and by three different mGluR agonists known to specifically stimulate different classes of vertebrate metabotropic glutamate receptors, including: (1S,3R)-ACPD, which stimulates group I mGluRs (2R,4R)-APDC, which stimulates group II mGluRs and L-AP4, which stimulates some group III mGluRs. Experiments exposing larvae to combinations of specific mGluR agonists and specific signal transduction modulators suggest that each tested mGluR uses a different signaling pathway. First, feeding stimulatory effects of (1S,3R)-ACPD were abolished by phospholipase C inhibitor, U 73122, but remained unaffected by adenylate cyclase activator, NKH 477, or phosphodiesterase inhibitor, Rolipram. Second, (2R,4R)-APDC induced feeding in presence of U 73122 or Rolipram, but lost its feeding stimulatory effects in presence of NKH 477. Finally, L-AP4 did not induce feeding in presence of Rolipram, but maintained its feeding stimulatory effects in presence of U 73122 or NKH 477. The activity of the general glutamate receptor activator MSG was abolished by NKH 477, and Rolipram. U 73122 did not affect MSG-stimulated feeding. These results suggest that transduction of MSG taste in the codling moth caterpillar relies mostly on cAMP-dependent signaling pathways.


Subject(s)
Excitatory Amino Acid Agonists/pharmacology , Feeding Behavior/drug effects , Lepidoptera/physiology , Receptors, Metabotropic Glutamate/agonists , Signal Transduction/drug effects , Animals
10.
J Insect Physiol ; 51(4): 445-53, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15890188

ABSTRACT

The insect oocyte sequesters nutritive proteins during patency, which is facilitated as a result of intercellular spaces occurring between follicular epithelial cells under the influence of juvenile hormone (JH). Patency was analyzed in the moth, Heliothis virescens, using a pharmacological approach, in which we used different JH homologues and chemicals that specifically target elements of two second-messenger pathways in vertebrates, the cAMP-dependent and inositol triphosphate/diacylglycerol signaling pathways. JH I and JH III evoked dose-dependent patency in H. virescens oocyte follicles, which was suppressed by the Na/K-ATPase inhibitor, ouabain. Patency was observed in follicular epithelial cells treated with either protein kinase C activator, PDBu, or protein kinase A activator, 8-Br-cAMP, by itself. The protein kinase C inhibitor, H-7, preferentially suppressed patency evoked by JH III, whereas the protein kinase A inhibitor, H89, preferentially suppressed that evoked by JH I. Additionally, patency was triggered by the adenylate cyclase activator, NKH 477, or peptide Gs-protein activator, cholera toxin, alone. Patency evoked by JH I was suppressed by the adenylate cyclase inhibitor, SQ 22,536, and GPAnt-2, a peptide antagonistic to Gs proteins that stimulates adenylate cyclase. Neither of these latter inhibitors, however, affected JH III-evoked patency. These results suggest that, in the process of patency in H. virescens ovarial follicles, JH I predominantly signals via the cAMP-dependent second messenger system, whereas JH III acts via the inositol triphosphate/diacylglycerol signaling pathway. Moreover, stimulation of patency by cholera toxin alone and inhibition of JH I-evoked patency by GPAnt-2, strongly suggest that JH I acts on the follicular epithelial cells via activation of G-protein, and-possibly-via G(s)-protein coupled receptor.


Subject(s)
Juvenile Hormones/physiology , Moths/physiology , Adenylyl Cyclase Inhibitors , Animals , Female , GTP-Binding Proteins/agonists , GTP-Binding Proteins/antagonists & inhibitors , Oocytes/ultrastructure , Ovary/drug effects , Ovary/physiology , Sesquiterpenes/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism
11.
J Econ Entomol ; 97(3): 836-45, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15279262

ABSTRACT

Mark-release-recapture experiments to study insect dispersal require the release of marked insects that can be easily identified among feral conspecifics. Oil-soluble dyes have been used successfully to mark various insect species. Two oil-soluble dyes, Sudan Red 7B (C.I. 26050) and Sudan Blue 670 (C.I. 61554), were added to diet of the southwestern corn borer, Diatraea grandiosella Dyar, and evaluated against an untreated control diet. Survival, diet consumption, larval and pupal weight, development time, fecundity, longevity, and dry weight of the adults were measured. Adults reared on the three diets were also tested for mating success. Some minor effects were observed for southwestern corn borers reared on the marked diets. Eggs, larvae, pupae, and adults were all reliably marked and readily identifiable. Adults retained color for their entire life span. Adults from each diet mated successfully with adults from the other diets. F1 progeny from the different mating combinations survived to the second instar but tended to lose the marker after 3-4 d on untreated diet. Both Sudan Red 7B and Sudan Blue 670 can be used to mark southwestern corn borer adults and thus should be useful for mark-release-recapture dispersal studies. The dyes will also be useful for short-term studies with marked larvae and oviposition behavior.


Subject(s)
Anthracenes , Azo Compounds , Coloring Agents/administration & dosage , Diet , Lepidoptera/growth & development , Animals , Coloring Agents/chemistry , Larva/growth & development , Lepidoptera/physiology , Oils , Ovum , Pupa/growth & development , Solubility
12.
Arch Insect Biochem Physiol ; 54(3): 121-33, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14571506

ABSTRACT

In Heliothis virescens, reproduction is strictly dependent on juvenile hormone (JH). In females, mating induces a sharp increase in JH titers, which stimulates increased vitellogenin biosynthesis and higher rates of egg production. JH biosynthesis is presumably stimulated by production and/or release of stimulatory neuropeptides such as allatotropins. There is evidence that allatotropin of H. virescens may be structurally related to Manduca sexta allatotropin (Manse-AT). In a radiochemical in vitro assay, synthetic Manse-AT stimulated JH biosynthesis by corpora allata (CA) of virgin H. virescens females in a dose-dependent manner, but had no effect on CA activity in H. virescens males. In females, the CA showed a transient increase in sensitivity to Manse-AT shortly after mating. Several structurally related peptides stimulated CA activity to a similar extent as Manse-AT. Corpora allata activity was stimulated by a Ca2+ ionophore, A23187. A membrane-permeable Ca2+ chelator, BAPTA/AM, antagonized the stimulatory effects of Manse-AT, suggesting that Manse-AT may enhance CA activity by increasing intracellular Ca2+ concentration.


Subject(s)
Insect Hormones/physiology , Juvenile Hormones/biosynthesis , Manduca/physiology , Neuropeptides/physiology , Amino Acid Sequence , Animals , Calcium/physiology , Female , Molecular Sequence Data , Sequence Homology, Amino Acid
13.
Arthropod Struct Dev ; 31(2): 131-46, 2002 Nov.
Article in English | MEDLINE | ID: mdl-18088976

ABSTRACT

Scanning and transmission electron microscopy were used to study the morphology and formation of the eggshell in the tarnished plant bug, Lygus lineolaris. Eggs are bean-shaped, with an operculum at the anterior end surrounded by a row of 36-40 respiratory horns. Three micropylar openings are on the operculum, and are sealed in oviposited eggs. The chorion consists of the chorion proper and the innermost chorionic layer. An air layer composed of colonnades is present in the chorion. The innermost chorionic layer is homogeneous and electron lucent. The follicle cells secrete electron dense materials that later coalesced into the reticulated vitelline membrane. This is followed by the deposition of the innermost chorionic layer by the follicle cells. After the primordial innermost chorionic layer is formed, follicle cells at the anterior pole of the oocyte secrete the scaffold for the colonnades in the air layer. Later, the primordial scaffold matrix is redistributed and localized at the lateral and posterior end of the oocyte where it becomes secondarily modified. At the end of choriogenesis, follicle cells at the anterior pole secrete the operculum and respiratory horns.

14.
Arch Insect Biochem Physiol ; 49(1): 10-21, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11754090

ABSTRACT

In vitro catabolism of juvenile hormone (JH) in haemolymph of adult female Cydia pomonella was ascribed mainly to juvenile hormone esterase (JHE) activity. No significant differences were noted between virgin and mated females 0-96 h post-emergence. Changes in JHE activity did not appear dependent upon fluctuations in JH titre; conversely, changes in JHE activity could not explain the changes in JH titres. Maximal JHE activity was recorded at 24 h (331.47 +/- 47.25 pmol/h/microl; 355.93 +/- 36.68 pmol/h/microl, virgin; mated insects, respectively) and preceded the peak in JH titres at 48 h. Topical application of JH II (10 ng-10 microg) or fenoxycarb (50 ng) enhanced JHE activity up to 640 and 56%, respectively. Treatment upon emergence with 10 microg JH II induced enzymic activity for less than 24 h, and when 10 microg JH II or 50 ng fenoxycarb were applied, circulating JH titres returned to control levels within 24 h. Oviposition was highly sensitive to exogenous JH and declined significantly with dosages >100 pg. To allow a degree of oocyte maturation before JH treatment, the hormone was administered at 6, 12, 24, or 48 h post-emergence and/or females were mated. Neither measure "protected" the system; oviposition declined immediately after JH application.


Subject(s)
Acetone/analogs & derivatives , Juvenile Hormones/metabolism , Moths/physiology , Oviposition/physiology , Phenylcarbamates , Acetone/pharmacology , Age Factors , Animals , Carbamates/pharmacology , Carboxylic Ester Hydrolases/analysis , Cholinesterase Inhibitors/pharmacology , Chromatography, Thin Layer , Female , Gas Chromatography-Mass Spectrometry , Insecticides/pharmacology , Isoflurophate/pharmacology , Juvenile Hormones/pharmacology , Male , Moths/anatomy & histology , Moths/metabolism , Oviposition/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...