Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 596-610, 2024 May.
Article in English | MEDLINE | ID: mdl-38169048

ABSTRACT

Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.


Subject(s)
Animal Feed , Chickens , Digestion , Endo-1,4-beta Xylanases , Animal Feed/analysis , Animals , Digestion/drug effects , Digestion/physiology , Endo-1,4-beta Xylanases/pharmacology , Endo-1,4-beta Xylanases/administration & dosage , Animal Nutritional Physiological Phenomena , Diet/veterinary , Xylans/pharmacology , Xylans/chemistry , Probiotics/pharmacology
2.
Cell Stress Chaperones ; 28(3): 321-331, 2023 05.
Article in English | MEDLINE | ID: mdl-37074531

ABSTRACT

Cell surface-bound human Hsp70 (hHsp70) sensitises tumour cells to the cytolytic attack of natural killer (NK) cells through the mediation of apoptosis-inducing serine protease, granzyme B (GrB). hHsp70 is thought to recruit NK cells to the immunological synapse via the extracellularly exposed 14 amino acid sequence, TKDNNLLGRFELSG, known as the TKD motif of Hsp70. Plasmodium falciparum-infected red blood cells (RBCs) habour both hHsp70 and an exported parasite Hsp70 termed PfHsp70-x. Both PfHsp70-x and hHsp70 share conserved TKD motifs. The role of PfHsp70-x in facilitating GrB uptake in malaria parasite-infected RBCs remains unknown, but hHsp70 enables a perforin-independent uptake of GrB into tumour cells. In the current study, we comparatively investigated the direct binding of GrB to either PfHsp70-x or hHsp70 in vitro. Using ELISA, slot blot assay and surface plasmon resonance (SPR) analysis, we demonstrated a direct interaction of GrB with hHsp70 and PfHsp70-x. SPR analysis revealed a higher affinity of GrB for PfHsp70-x than hHsp70. In addition, we established that the TKD motif of PfHsp70-x directly interacts with GrB. The data further suggest that the C-terminal EEVN motif of PfHsp70-x augments the affinity of PfHsp70-x for GrB but is not a prerequisite for the binding. A potent antiplasmodial activity (IC50 of 0.5 µM) of GrB could be demonstrated. These findings suggest that the uptake of GrB by parasite-infected RBCs might be mediated by both hHsp70 and PfHsp70-x. The combined activity of both proteins could account for the antiplasmodial activity of GrB at the blood stage.


Subject(s)
Antimalarials , Neoplasms , Humans , Plasmodium falciparum/metabolism , Antimalarials/chemistry , Granzymes/metabolism , Protein Binding , HSP70 Heat-Shock Proteins/metabolism
3.
Molecules ; 23(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30388847

ABSTRACT

Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins. Most Hsps are generally stress-inducible as they play a particularly important cytoprotective role in cells exposed to stressful conditions. Initially, Hsps were generally thought to occur intracellulary. However, recent work has shown that some Hsps are secreted to the cell exterior particularly in response to stress. For this reason, they are generally regarded as danger signaling biomarkers. In this way, they prompt the immune system to react to prevailing adverse cellular conditions. For example, their enhanced secretion by cancer cells facilitate targeting of these cells by natural killer cells. Notably, Hsps are implicated in both pro-inflammatory and anti-inflammatory responses. Their effects on immune cells depends on a number of aspects such as concentration of the respective Hsp species. In addition, various Hsp species exert unique effects on immune cells. Because of their conservation, Hsps are implicated in auto-immune diseases. Here we discuss the various metabolic pathways in which various Hsps manifest immune modulation. In addition, we discuss possible experimental variations that may account for contradictory reports on the immunomodulatory function of some Hsps.


Subject(s)
Heat-Shock Proteins/metabolism , Immunologic Factors/metabolism , Immunomodulation , Animals , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans
4.
Proteins ; 86(11): 1189-1201, 2018 11.
Article in English | MEDLINE | ID: mdl-30183110

ABSTRACT

Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70-x (PfHsp70-x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite-infected red blood cell (RBC) along with PfHsp70-x. The role of PfHsp70-x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70-x is the presence of EEVN residues at its C-terminus. In this regard, PfHsp70-x resembles canonical eukaryotic cytosol-localized Hsp70s which possess EEVD residues at their C-termini in place of the EEVN residues associated with PfHsp70-x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co-chaperones. Characterization of the role of the EEVN residues of PfHsp70-x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70-x (full length) and its EEVN minus form (PfHsp70-xT ). We then conducted structure- function assays towards establishing the role of the EEVN motif of PfHsp70-x. Our findings suggest that the EEVN residues of PfHsp70-x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70-x and human Hsp70-Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70-x and hHsp90 cooperate in vivo.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Motifs , HSP70 Heat-Shock Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protein Binding , Protein Folding , Protein Interaction Maps , Protozoan Proteins/metabolism , Tumor Suppressor Proteins/metabolism
5.
Molecules ; 22(12)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29206141

ABSTRACT

Heat shock proteins (Hsps), amongst them, Hsp70 and Hsp90 families, serve mainly as facilitators of protein folding (molecular chaperones) of the cell. The Hsp70 family of proteins represents one of the most important molecular chaperones in the cell. Plasmodium falciparum, the main agent of malaria, expresses six Hsp70 isoforms. Two (PfHsp70-1 and PfHsp70-z) of these localize to the parasite cytosol. PHsp70-1 is known to occur in a functional complex with another chaperone, PfHsp90 via a co-chaperone, P. falciparum Hsp70-Hsp90 organising protein (PfHop). (-)-Epigallocatechin-3-gallate (EGCG) is a green tea constituent that is thought to possess antiplasmodial activity. However, the mechanism by which EGCG exhibits antiplasmodial activity is not fully understood. A previous study proposed that EGCG binds to the N-terminal ATPase domain of Hsp70. In the current study, we overexpressed and purified recombinant forms of two P. falciparum cytosol localized Hsp70s (PfHsp70-1 and PfHsp70-z), and PfHop, a co-chaperone of PfHsp70-1. Using the surface plasmon resonance approach, we demonstrated that EGCG directly binds to the two Hsp70s. We further observed that binding of EGCG to the two proteins resulted in secondary and tertiary conformational changes. In addition, EGCG inhibited the ATPase and chaperone function of the two proteins. Furthermore, EGCG abrogated association of the two Hsp70s with their functional partners. Using parasites cultured in vitro at the blood stages, we observed that 2.9 µM EGCG suppressed 50% P. falciparum parasite growth (IC50). Our findings demonstrate that EGCG directly binds to PfHsp70-1 and PfHsp70-z to inhibit both the ATPase and chaperone functions of the proteins. Our study constitutes the first direct evidence suggesting that the antiplasmodial activity of EGCG is at least in part accounted for by its inhibition of Hsp70 function.


Subject(s)
Antimalarials/pharmacology , Catechin/analogs & derivatives , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Antimalarials/chemistry , Binding Sites , Catechin/chemistry , Catechin/pharmacology , Cloning, Molecular , Cytosol/drug effects , Cytosol/metabolism , Erythrocytes/drug effects , Erythrocytes/parasitology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Inhibitory Concentration 50 , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Cell Stress Chaperones ; 22(5): 707-715, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28455613

ABSTRACT

Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s. Of these, two (PfHsp70-1 and PfHsp70-z) localize to the parasite cytosol. Previously conducted gene knockout studies suggested that PfHsp70-z is essential, and it has been demonstrated that small-molecule inhibitors targeting PfHsp70-1 cause parasite death. For this reason, both PfHsp70-1 and PfHsp70-z are potential antimalarial targets. Two cyclic lipopeptides, colistin and polymyxin B (PMB), have been shown to bind another heat shock protein, Hsp90, inhibiting its chaperone function. In the current study, we investigated the effect of PMB on the structure-function features of PfHsp70-1 and PfHsp70-z. Using surface plasmon resonance analysis, we observed that PMB directly interacts with both PfHsp70-1 and PfHsp70-z. In addition, using circular dichroism spectrometric analysis combined with tryptophan fluorescence measurements, we observed that PMB modulated the secondary and tertiary structures of Hsp70. Furthermore, PMB inhibited the basal ATPase activity and chaperone function of the two Hsp70s. Our findings suggest that PMB associates with Hsp70 to inhibit its function. In light of the central role of Hsp70 in cellular proteostasis and its essential role in the development of malaria parasites in particular, our findings expand the library of small-molecule inhibitors that target this medically important class of molecular chaperones.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Polymyxin B/pharmacology , Protozoan Proteins/metabolism , Circular Dichroism , HSP70 Heat-Shock Proteins/genetics , Plasmodium falciparum/drug effects , Polymyxin B/chemistry , Polymyxin B/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...