Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(31)2024 May 09.
Article in English | MEDLINE | ID: mdl-38663414

ABSTRACT

A comprehensive study of structural and magnetotransport properties of pristine Bi2-xSbxTe3-ySey(BSTS) single crystals and doped with Zn (BSTS:Zn) and Ga (BSTS:Ga) are presented here. Magnetic field dependent Hall resistivities of the single crystals indicate that the holes are the majority carriers. The field dependent resistivity curves at different temperatures of the crystals display cusp-like characteristics at low magnetic fields, attributed to two-dimensional (2D) weak antilocalization (WAL) effect. We fit the observed low-field WAL effects at low temperatures using 2D and three-dimensional (3D) Hikami-Larkin-Nagaoka (HLN) equations. The 2D HLN equation fits the data more closely than the 3D HLN equation, indicating a 2D nature. The 2D HLN equation fit to the low field WAL effects at various temperatures reveal a phase coherence length (lφ) that decreases as temperature increases. The variation oflφwith temperature followsT-0.41power law for BSTS:Zn, suggesting that the dominant dephasing mechanism is a 2D electron-electron (e-e) interactions. For pristine BSTS and BSTS:Ga,lφ(T) is described by considering a coexistence of 2De-eand electron-phonon (e-p) interactions in the single crystals. The temperature variation of the longitudinal resistance in BSTS:Ga is described by 3D Mott variable range hoping model. In contrast, the transport mechanisms of both pristine BSTS and BSTS:Zn are described by a combination of 2D WAL/EEI models and 3D WAL.

2.
J Phys Condens Matter ; 29(7): 075901, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28032611

ABSTRACT

The influence of dopants (Co, Cu, Fe and Ni) on the optical, electronic and magnetic properties of multiferroic MnWO4 was studied using Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), magnetization measurements and density functional theory (DFT) calculations. The evolution of Raman spectra with different elemental substitutions at the Mn site was also studied, where the peak width increased with doping of higher mass elements (Co, Cu, Fe and Ni). UV-Vis diffuse reflectance spectroscopy on polycrystalline Mn(1-x) A x WO4 (A = Co, Cu, Fe and Ni) (0 ⩽ [Formula: see text] ⩽ 0. was performed. The evaluated electronic band gap decreasing with successive Co, Cu and Fe doping reflected the lower ionic radius of the substituted element, and for Ni-doped MnWO4 the band gap increased slightly compared to the parent MnWO4. Bader charge transfer and a partial density of states (PDOS) analysis from DFT simulations predict the appearance of impurity states in the band gap region (of pure MnWO4) from the d orbital of the dopant (Co, Cu and Fe) hybridized with the p orbital of the bonded O atoms due to charge transfer from O to the dopant, and reduced the band gap of Co, Cu and Fe-doped MnWO4. On the other hand, for Ni-doped MnWO4 strong W-O hybridization occurring due to large charge transfer from oxygen to tungsten leads to an increase in the band gap. The band gap, computed using the GGA + U method, is close to the experimental value. The signature of the d-d transition observed in the UV spectra is explained in terms of the crystal field stabilization energy caused by the octahedral distortion present in the lattice. Three different antiferromagnetic phases (AF1, AF2 and AF3) are identified in MnWO4 and also for the Co (18.75%)-doped sample. For Cu-doped samples, suppression of the AF1 phase and stabilization of the AF2 phase is observed up to 2 K. Successive doping of Cu leads to the diminution of magnetic frustration. A new magnetic order is identified for Ni-doped MnWO4 in the temperature range 13.7-20 K.

3.
Int J Med Sci ; 1(3): 152-164, 2004.
Article in English | MEDLINE | ID: mdl-15912194

ABSTRACT

Osteoporosis is characterized by decreased bone mineral density and mechanistic imbalances of bone tissue that may result in reduced skeletal strength and an enhanced susceptibility to fractures. Osteoporosis in its most common form affects the elderly (both sexes) and all racial groups of human beings. Multiple environmental risk factors like acquired immune deficiency syndrome (AIDS) are believed to be one of the causes of osteoporosis. Recently a high incidence of osteoporosis has been observed in human immunodeficiency virus (HIV) infected individuals. The etiology of this occurrence in HIV infections is controversial. This problem seems to be more frequent in patients receiving potent antiretroviral therapy. In AIDS, the main suggested risk factors for the development of osteoporosis are use of protease inhibitors, longer duration of HIV infection, lower body weight before antiretroviral therapy, high viral load. Variations in serum parameters like osteocalcin, c-telopeptide, levels of elements like Calcium, Magnesium, Phosphorus, concentration of vitamin-D metabolites, lactate levels, bicarbonate concentrations, amount of alkaline phosphatase are demonstrated in the course of development of osteoporosis. OPG/RANKL/RANK system is final mediator of bone remodeling. Bone mineral density (BMD) test is of added value to assess the risk of osteoporosis in patients infected with AIDS. The biochemical markers also aid in this assessment. Clinical management mostly follows the lines of treatment of osteoporosis and osteopenia.

SELECTION OF CITATIONS
SEARCH DETAIL
...