Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Fungi (Basel) ; 9(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36836277

ABSTRACT

BACKGROUND: Mucormycetes, a heterogeneous group of fungi, induce a life-threatening disease called mucormycosis. Immune deficiencies represent a major risk factor; hence, we wanted to illuminate the role of complement and platelets in the defense against mucormycetes. METHODS: Rhizopus arrhizus (Ra), Rhizopus microsporus (Rm), Lichtheimia ramosa (Lr), Lichtheimia corymbifera (Lc), Rhizomucor pusillus (Rmp), and Mucor circinelloides (Mc) spores were opsonized with human and mouse serum, and C1q, C3c, and terminal complement complex (C5b-9) deposition was measured. Additionally, thrombocytopenic, C3-deficient, or C6-deficient mice were intravenously infected with selected isolates. Survival and immunological parameters were monitored, and fungal burden was determined and compared to that of immunocompetent and neutropenic mice. RESULTS: In vitro experiments showed significant differences in complement deposition between mucormycetes. Mc isolates bound up to threefold more human C5b-9 than other mucormycetes. Lr, Lc, and Mc bound high levels of murine C3c, whereas human C3c deposition was reduced on Mc compared to Lr and Lc. Murine C3c deposition negatively correlated with virulence. Complement deficiencies and neutropenia, but not thrombocytopenia, were shown to be a risk factor for a lethal outcome. CONCLUSION: Complement deposition varies between mucormycetes. Additionally, we demonstrated that complement and neutrophilic granulocytes, but not platelets, play an important role in a murine model of disseminated mucormycosis.

2.
Curr Oncol ; 29(12): 9833-9854, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36547187

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.


Subject(s)
Carcinogenesis , Carcinoma, Pancreatic Ductal , Dysbiosis , Malassezia , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/pathology , Complement System Proteins/metabolism , Dysbiosis/microbiology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/pathology , Pilot Projects , Prognosis , Tumor Microenvironment
3.
Antimicrob Agents Chemother ; 66(10): e0068122, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36190233

ABSTRACT

Platelets are currently thought to harbor antimicrobial functions and might therefore play a crucial role in infections, e.g., those caused by Aspergillus or mucormycetes. The incidence of invasive fungal infections is increasing, particularly during the coronavirus disease 2019 (COVID-19) pandemic, and such infections continue to be life-threatening in immunocompromised patients. For this reason, the interaction of antimycotics with platelets is a key issue to evaluate modern therapeutic regimens. Amphotericin B (AmB) is widely used for the therapy of invasive fungal infections either as deoxycholate (AmB-D) or as a liposomal formulation (L-AmB). We showed that AmB strongly activates platelets within a few minutes. AmB concentrations commonly measured in the blood of patients were sufficient to stimulate platelets, indicating that this effect is highly relevant in vivo. The stimulating effect was corroborated by a broad spectrum of platelet activation parameters, including degranulation, aggregation, budding of microparticles, morphological changes, and enhanced adherence to fungal hyphae. Comparison between the deoxycholate and the liposomal formulation excluded the possibility that the liposomal part of L-Amb is responsible for these effects, as no difference was visible. The induction of platelet activation and alteration by L-AmB resulted in the activation of other parts of innate immunity, such as stimulation of the complement cascade and interaction with granulocytes. These mechanisms might substantially fuel the antifungal immune reaction in invasive mycoses. On the other hand, thrombosis and excessive inflammatory processes might occur via these mechanisms. Furthermore, the viability of L-AmB-activated platelets was consequently decreased, a process that might contribute to thrombocytopenia in patients.


Subject(s)
COVID-19 , Invasive Fungal Infections , Mycoses , Humans , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Fibrinolytic Agents , Aspergillus , Invasive Fungal Infections/drug therapy , Liposomes/therapeutic use , Deoxycholic Acid/pharmacology , Deoxycholic Acid/therapeutic use
4.
J Fungi (Basel) ; 8(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628790

ABSTRACT

N-chlorotaurine (NCT) can be used topically as a well-tolerated anti-infective at different body sites. The aim of this study was to investigate the efficacy of inhaled NCT in a mouse model of fungal pneumonia. Specific pathogen-free female C57BL/6JRj seven-week-old mice were immune-suppressed with cyclophosphamide. After 4 days, the mice were inoculated intranasally with 1.5 × 10E7 spores of Lichtheimia corymbifera or 1.0 × 10E7 spores of Aspergillus fumigatus. They were randomized and treated three times daily for 10 min with aerosolized 1% NCT or 0.9% sodium chloride starting 1 h after the inoculation. The mice were observed for survival for two weeks, and fungal load, blood inflammation parameters, bronchoalveolar lavage, and histology of organs were evaluated upon their death or at the end of this period. Inhalations were well-tolerated. After challenge with L. corymbifera, seven out of the nine mice (77.8%) survived for 15 days in the test group, which was in strong contrast to one out of the nine mice (11.1%) in the control group (p = 0.0049). The count of colony-forming units in the homogenized lung tissues came to 1.60 (1.30; 1.99; median, quartiles) log10 in the test group and to 4.26 (2.17; 4.53) log10 in the control group (p = 0.0032). Body weight and temperature, white blood count, and haptoglobin significantly improved with NCT treatment. With A. fumigatus, all the mice except for one in the test group died within 4 days without a significant difference from the control group. Inhaled NCT applied early demonstrated a highly significant curative effect in L. corymbifera pneumonia, while this could not be shown in A. fumigatus pneumonia, probably due to a too high inoculum. Nevertheless, this study for the first time disclosed efficacy of NCT in pneumonia in vivo.

5.
Antibiotics (Basel) ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35203859

ABSTRACT

Candidiasis is common in diabetic patients. Complement evasion is facilitated by binding complement factor H (FH). Since the expression of high-affinity glucose transporter 1 (Hgt1), a FH-binding molecule, is glucose-dependent, we aimed to study its relevance to the pathogenesis of Candida albicans. Euglycemic and diabetic mice were intravenously challenged with either Candida albicans lacking Hgt1 (hgt1-/-) or its parental strain (SN152). Survival and clinical status were monitored over 14 days. In vitro, Candida albicans strains were grown at different glucose concentrations, opsonized with human serum, and checked for C3b/iC3b and FH deposition. Phagocytosis was studied by fluorescein isothiocyanate-labeled opsonized yeast cells incubated with granulocytes. The murine model demonstrated a significantly higher virulence of SN152 in diabetic mice and an overall increased lethality of mice challenged with hgt1-/-. In vitro lower phagocytosis and C3b/iC3b deposition and higher FH deposition were demonstrated for SN152 incubated at higher glucose concentrations, while there was no difference on hgt1-/- at physiological glucose concentrations. Despite C3b/iC3b and FH deposition being glucose-dependent, this effect has a minor influence on phagocytosis. The absence of Hgt1 is diminishing this dependency on complement deposition, but it cannot be attributed to being beneficial in a murine model.

6.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34960645

ABSTRACT

Overactivation of the complement system has been characterized in severe COVID-19 cases. Complement components are known to trigger NETosis via the coagulation cascade and have also been reported in human tracheobronchial epithelial cells. In this longitudinal study, we investigated systemic and local complement activation and NETosis in COVID-19 patients that underwent mechanical ventilation. Results confirmed significantly higher baseline levels of serum C5a (24.5 ± 39.0 ng/mL) and TCC (11.03 ± 8.52 µg/mL) in patients compared to healthy controls (p < 0.01 and p < 0.0001, respectively). Furthermore, systemic NETosis was significantly augmented in patients (5.87 (±3.71) × 106 neutrophils/mL) compared to healthy controls (0.82 (±0.74) × 106 neutrophils/mL) (p < 0.0001). In tracheal fluid, baseline TCC levels but not C5a and NETosis, were significantly higher in patients. Kinetic studies of systemic complement activation revealed markedly higher levels of TCC and CRP in nonsurvivors compared to survivors. In contrast, kinetic studies showed decreased local NETosis in tracheal fluid but comparable local complement activation in nonsurvivors compared to survivors. Systemic TCC and NETosis were significantly correlated with inflammation and coagulation markers. We propose that a ratio comprising systemic inflammation, complement activation, and chest X-ray score could be rendered as a predictive parameter of patient outcome in severe SARS-CoV-2 infections.


Subject(s)
COVID-19/immunology , Complement Activation/immunology , Inflammation/immunology , Aged , Aged, 80 and over , COVID-19/mortality , Complement C5a , Cytokines/blood , Epithelial Cells , Female , Humans , Inflammation/blood , Kinetics , Longitudinal Studies , Male , Prospective Studies , SARS-CoV-2 , Thorax/diagnostic imaging , Viral Load
7.
mBio ; 13(1): e0356321, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35132877

ABSTRACT

In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble ß-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.


Subject(s)
Exosomes , MicroRNAs , Humans , Candida albicans/genetics , Monocytes/metabolism , MicroRNAs/genetics , Exosomes/metabolism
8.
Front Immunol ; 11: 550827, 2020.
Article in English | MEDLINE | ID: mdl-33123129

ABSTRACT

Invasive fungal infections caused by Aspergillus (A.) and Mucorales species still represent life-threatening diseases in immunocompromised individuals, and deeper knowledge about fungal interactions with elements of innate immunity, such as complement and platelets, appears essential for optimized therapy. Previous studies showed that galactosaminogalactan secreted by A. fumigatus and A. flavus is deposited on platelets, thereby inducing their activation. Since the altered platelet surface is a putative trigger for complement activation, we aimed to study the interplay of platelets with complement in the presence of fungal GAG. Culture supernatants (SN) of A. fumigatus and A. flavus both induced not only GAG deposition but also subsequent deposition of complement C3 fragments on the platelet surface. The SN of a Δuge3 mutant of A. fumigatus, which is unable to synthesize GAG, did not induce complement deposition on platelets, nor did the SN of other Aspergillus species and all tested Mucorales. Detailed analysis revealed that GAG deposition itself triggered the complement cascade rather than the GAG-induced phosphatidylserine exposure. The lectin pathway of complement could be shown to be crucially involved in this process. GAG-induced complement activation on the platelet surface was revealed to trigger processes that might contribute to the pathogenesis of invasive aspergillosis by A. fumigatus or A. flavus. Both pro-inflammatory anaphylatoxins C3a and C5a arose when platelets were incubated with SN of these fungal species; these processes might favor excessive inflammation after fungal infection. Furthermore, platelets were stimulated to shed microparticles, which are also known to harbor pro-inflammatory and pro-coagulant properties. Not only did early processes of the complement cascade proceed on platelets, but also the formation of the terminal complement C5b-9 complex was detected on platelets after incubation with fungal SN. Subsequently, reduced viability of the platelets could be shown, which might contribute to the lowered platelet numbers found in infected patients. In summary, fungal GAG initiates an interplay between complement and platelets that can be supposed to contribute to excessive inflammation, thrombocytopenia, and thrombosis, which are important hallmarks of fatal invasive mycoses.


Subject(s)
Aspergillus/immunology , Blood Platelets/immunology , Blood Platelets/metabolism , Complement Activation/immunology , Fungal Polysaccharides/immunology , Polysaccharides/immunology , Biomarkers , Cell Survival , Disease Susceptibility , Flow Cytometry , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Platelet Activation/immunology , Platelet Count
9.
Front Immunol ; 11: 1471, 2020.
Article in English | MEDLINE | ID: mdl-32765510

ABSTRACT

Candida is a dominant fungal pathogen in immunocompromised hosts, leading to opportunistic infections. Complement with its multifaceted functions is involved in the immune defense against this yeast, and recently several novel aspects have emerged in this old battle. It is clear that Candida can adopt both roles as a colonizer or as a pathogen. In our article, we focus on the molecular mechanisms of the Candida-complement interplay, which occur in disseminated disease as well as locally on skin or on mucous membranes in mouth and vagina; the mechanisms can be supposed to be the same. Activation of the complement system by Candida is facilitated by directly triggering the three dominant pathways, but also indirectly via the coagulation and fibrinolysis systems. The complement-mediated anti-Candida effects induced thereby clearly extend chemotaxis, opsonization, and phagocytosis, and even the membrane attack complex formed on the fungal surface plays a modulatory role, although lysis of the yeast per se cannot be induced due to the thick fungal cell wall. In order to avoid the hostile action of complement, several evasion mechanisms have evolved during co-evolution, comprising the avoidance of recognition, and destruction. The latter comes in many flavors, in particular the cleavage of complement proteins by yeast enzymes and the exploitation of regulatory proteins by recruiting them on the cell wall, such as factor H. The rationale behind that is that the fluid phase regulators on the fungal cell surface down-regulate complement locally. Interestingly, however, evasion protein knockout strains do not necessarily lead to an attenuated disease, so it is likely more complex in vivo than initially thought. The interactions between complement and non-albicans species also deserve attention, especially Candida auris, a recently identified drug-resistant species of medical importance. This is in particular worth investigating, as deciphering of these interactions may lead to alternative anti-fungal therapies directly targeting the molecular mechanisms.


Subject(s)
Candida albicans/physiology , Candidiasis/immunology , Complement System Proteins/metabolism , Animals , Complement Activation , Humans , Immune Evasion , Immunity, Innate
10.
PLoS One ; 15(6): e0234063, 2020.
Article in English | MEDLINE | ID: mdl-32555589

ABSTRACT

Pathogenic mucormycetes induce diseases with considerable morbidity and mortality in immunocompromised patients. Virulence data comparing different Mucorales species and various underlying risk factors are limited. We therefore compared the pathogenesis of inhalative infection by Rhizopus (R.) arrhizus and Lichtheimia (L.) corymbifera in murine models for predominant risk factors for onset of infection. Mice with diabetes or treated with cyclophosphamide or cortisone acetate were challenged via the intranasal route with an isolate of R. arrhizus or L. corymbifera, respectively. Clinical, immunological and inflammation parameters as well as efficacy of posaconazole prophylaxis were monitored over 14 days. Whereas immunocompetent mice showed no clinical symptoms after mucormycete infection, mice treated with either cyclophosphamide (CP) or cortisone acetate (CA) were highly susceptible. Animals infected with the isolate of R. arrhizus showed prolonged survival and lower mortality, compared to those exposed to the L. corymbifera isolate. This lower virulence of R. arrhizus was risk factor-dependent, since diabetic mice died only after infection with Rhizopus, whereas all Lichtheimia-infected diabetic animals survived. Under posaconazole prophylaxis, both mucormycetes were able to establish breakthrough infections in CA- and CP-treated mice, but the course of infection was significantly delayed. Detailed analysis revealed that susceptibility of CA- and CP-treated mice could not be mimicked by exclusive lack or downmodulation of neutrophils, platelets or complement, but can be supposed to be the consequence of a broad immunosuppressive effect induced by the drugs. Both Lichtheimia corymbifera and Rhizopus arrhizus induce invasive mycoses in immunocompromised hosts after inhalative infection. Key parameters such as virulence and immunopathogenesis vary strongly according to fungal species and underlying risk group. Selected neutropenia is no sufficient risk factor for onset of inhalative mucormycosis.


Subject(s)
Inhalation , Mucorales/physiology , Mucormycosis/immunology , Rhizopus/physiology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mucormycosis/prevention & control , Survival Analysis , Triazoles/pharmacology
11.
Nat Commun ; 11(1): 2331, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393780

ABSTRACT

Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-ß1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble ß-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-ß1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-ß1 to the TGF-ß receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-ß1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-ß1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.


Subject(s)
Immunomodulation , Macrophage-1 Antigen/metabolism , Monocytes/metabolism , Transforming Growth Factor beta1/metabolism , Transport Vesicles/metabolism , Animals , Apoptosis , Candida albicans/metabolism , Candida albicans/ultrastructure , Down-Regulation , Dynamic Light Scattering , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Models, Biological , Monocytes/microbiology , Monocytes/ultrastructure , Protein Transport , Solubility , Transcription, Genetic , Up-Regulation , beta-Glucans/metabolism
12.
Microbes Infect ; 22(8): 331-339, 2020 09.
Article in English | MEDLINE | ID: mdl-31962135

ABSTRACT

Platelets are meanwhile recognized as versatile elements within the immune system and appear to play a key role in the innate immune response to pathogens including fungi. Previous experiments revealed platelet activation by direct contact with the hyphal-associated polysaccharide galactosaminogalactan (GAG). Since secreted fungal products may also be relevant and trigger immune reactions or thrombosis, we screened culture supernatants (SN) of human-pathogenic fungi for their capacity to activate platelets. For that purpose, platelets were incubated with SN from various fungal species; platelet activation and GAG deposition on the surface of platelets were detected by flow cytometry and electron and confocal microscopy, Culture supernatants of Aspergillus fumigatus and flavus isolates were potent platelet stimulators in a dose- and time-dependent manner, while SN of other Aspergillus species and all tested mucormycete species did not significantly induce platelet activation. The capacity of culture SN to activate platelets was dependent on fungal production of GAG and deposition of secreted GAG on the platelet surface; supernatants from mucormycetes or mutants of A. fumigatus lacking GAG secretion did not affect platelet activity. These results suggest that invading fungi can stimulate platelets not only locally through direct interactions with fungal hyphae, but can also act over a certain distance through secreted GAG.


Subject(s)
Aspergillus/metabolism , Fungal Polysaccharides/metabolism , Platelet Activation , Polysaccharides/metabolism , Aspergillus/classification , Blood Platelets/metabolism , Culture Media, Conditioned/metabolism , Humans , Immunity, Innate , Mucorales/classification , Mucorales/metabolism , Species Specificity
13.
Front Immunol ; 11: 565869, 2020.
Article in English | MEDLINE | ID: mdl-33519798

ABSTRACT

Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.


Subject(s)
Candida albicans/physiology , Candidiasis/blood , Host-Pathogen Interactions , Animals , Candidiasis/immunology , Candidiasis/microbiology , Female , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/immunology , Platelet Aggregation , Specific Pathogen-Free Organisms
14.
J Fungi (Basel) ; 5(4)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614610

ABSTRACT

Mucormycosis infections are infrequent yet aggressive and serious fungal infections. Early diagnosis of mucormycosis and its discrimination from other fungal infections is required for targeted treatment and more favorable patient outcomes. The majority of the molecular assays use 18 S rDNA. In the current study, we aimed to explore the potential of the mitochondrial rnl (encoding for large-subunit-ribosomal-RNA) gene as a novel molecular marker suitable for research and diagnostics. Rnl was evaluated as a marker for: (1) the Mucorales family, (2) species identification (Rhizopus arrhizus, R. microsporus, Mucor circinelloides, and Lichtheimia species complexes), (3) growth stage, and (4) quantification. Sensitivity, specificity, discriminatory power, the limit of detection (LoD), and cross-reactivity were evaluated. Assays were tested using pure cultures, spiked clinical samples, murine organs, and human paraffin-embedded-tissue (FFPE) samples. Mitochondrial markers were found to be superior to nuclear markers for degraded samples. Rnl outperformed the UMD universal® (Molyzm) marker in FFPE (71.5% positive samples versus 50%). Spiked blood samples highlighted the potential of rnl as a pan-Mucorales screening test. Fungal burden was reproducibly quantified in murine organs using standard curves. Identification of pure cultures gave a perfect (100%) correlation with the detected internal transcribed spacer (ITS) sequence. In conclusion, mitochondrial genes, such as rnl, provide an alternative to the nuclear 18 S rDNA genes and deserve further evaluation.

15.
Virulence ; 10(1): 976-983, 2019 12.
Article in English | MEDLINE | ID: mdl-30667338

ABSTRACT

Aspergillus spp and particularly the species Aspergillus fumigatus are the causative agents of invasive aspergillosis, a progressive necrotizing pneumonia that occurs in immunocompromised patients. The limited efficacy of currently available antifungals has led to interest in a better understanding of the molecular mechanisms underlying the pathogenesis of invasive aspergillosis in order to identify new therapeutic targets for this devastating disease. The Aspergillus exopolysaccharide galactosaminogalactan (GAG) plays an important role in the pathogenesis of experimental invasive aspergillosis. The present review article summarizes our current understanding of GAG composition and synthesis and the molecular mechanisms whereby GAG promotes virulence. Promising directions for future research and the prospect of GAG as both a therapy and therapeutic target are reviewed.


Subject(s)
Aspergillosis/microbiology , Aspergillus fumigatus/pathogenicity , Host-Pathogen Interactions , Polysaccharides/genetics , Polysaccharides/metabolism , Animals , Biofilms , Biosynthetic Pathways , Fungal Proteins/genetics , Humans , Mice , Virulence , Virulence Factors
16.
J Innate Immun ; 11(1): 52-62, 2019.
Article in English | MEDLINE | ID: mdl-30176656

ABSTRACT

Over the last 2 decades, platelets have been recognized as versatile players of innate immunity. The interaction of platelets with fungal pathogens and subsequent processes may critically influence the clinical outcome of invasive mycoses. Since the role of platelets in Candida infections is poorly characterized and controversially discussed, we studied interactions of human platelets with yeast cells, (pseudo-)hyphae, biofilms and secretory products of human pathogenic Candida species applying platelet rich plasma and a whole blood model. Incubation of Candida with platelets resulted in moderate mutual interaction with some variation between different species. The rate of platelets binding to -Candida (pseudo-) hyphae and candidal biofilm was comparably low as that to the yeast form. Candida-derived secretory products did not affect platelet activity - neither stimulatory nor inhibitory. The small subset of platelets that bound to Candida morphotypes was consequently activated. However, this did not result in reduced growth or viability of the different Candida species. A whole blood model simulating in vivo conditions confirmed platelet activation in the subpopulation of Candida-bound platelets. Thus, the inability of platelets to efficiently react on Candida presence might favor fungal survival in the blood and contribute to high morbidity of Candida sepsis.


Subject(s)
Candida albicans/metabolism , Candidiasis/blood , Blood Platelets/immunology , Blood Platelets/microbiology , Candida albicans/immunology , Candidiasis/immunology , Humans , Immunity, Innate , Platelet Activation
17.
Front Microbiol ; 9: 3319, 2018.
Article in English | MEDLINE | ID: mdl-30697200

ABSTRACT

Complement is a tightly controlled arm of the innate immune system, facilitating phagocytosis and killing of invading pathogens. Factor H (FH) is the main fluid-phase inhibitor of the alternative pathway. Many pathogens can hijack FH from the host and protect themselves from complement-dependent killing. Candida albicans is a clinically important opportunistic yeast, expressing different FH binding molecules on its cell surface, which allow complement evasion. One such FH binding molecule is the transmembrane protein "High affinity glucose transporter 1" (Hgt1p), involved in glucose metabolism. This study demonstrated that Hgt1p transcription and expression is induced and highest at the low, but physiological glucose concentration of 0.1%. Thus, this concentration was used throughout the study. We also demonstrated the transport of Hgt1p to the fungal cell wall surface by vesicle trafficking and its release by exosomes containing Hgt1p integrated in the vesicular membrane. We corroborated Hgt1p as FH binding molecule. A polyclonal anti-Hgt1p antibody was created which interfered with the binding of FH, present in normal human serum to the fungal cell wall. A chimeric molecule consisting of FH domains 6 and 7 fused to human IgG1 Fc (FH6.7/Fc) even more comprehensively blocked FH binding, likely because FH6.7/Fc diverted FH away from fungal FH ligands other than Hgt1p. Reduced FH binding to the yeast was associated with a concomitant increase in C3b/iC3b deposition and resulted in significantly increased in vitro phagocytosis and killing by human neutrophils. In conclusion, Hgt1p also exhibits non-canonical functions such as binding FH after its export to the cell wall. Blocking Hgt1p-FH interactions may represent a tool to enhance complement activation on the fungal surface to promote phagocytosis and killing of C. albicans.

18.
Med Mycol ; 56(6): 703-710, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29228287

ABSTRACT

No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Azoles/pharmacology , Drug Resistance, Fungal/drug effects , Animals , Antifungal Agents/administration & dosage , Aspergillosis/drug therapy , Aspergillosis/immunology , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Azoles/administration & dosage , Disease Models, Animal , Drug Resistance, Fungal/genetics , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mutation , Spleen/microbiology , Spleen/pathology , Treatment Outcome , Triazoles/administration & dosage , Triazoles/pharmacology , Virulence
19.
Virulence ; 8(8): 1657-1667, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28750194

ABSTRACT

Mucormycosis is a rare fungal infection; however, the number of cases increased during the last decades. The main risk factors are immunosuppression and uncontrolled diabetes mellitus. Although Lichtheimia species represent a common cause of mucormycosis in Europe, virulence and pathogenesis of this genus has not been investigated in detail yet. Using murine pulmonary infection models, we found that immunosuppression is essential for establishment of infection. The disease was characterized by necrosis, angioinvasion, thrombosis, and the lethal course of infection was associated with systemic activation of platelets. Furthermore, dissemination to internal organs was frequently observed. While the virulence potential of individual L. corymbifera and L. ramosa isolates differed, pathogenicity of both species was comparable. Although ketoacidosis promoted Rhizopus infection in mice, it did not predispose mice to infection with Lichtheimia in the absence of additional immunosuppression. This might partially explain the dominance of Rhizopus as cause of mucormycosis in countries with high prevalence of ketoacidotic patients.


Subject(s)
Ketosis/immunology , Mucorales/physiology , Mucormycosis/microbiology , Animals , Disease Models, Animal , Disease Susceptibility , Female , Humans , Immunosuppression Therapy , Ketosis/complications , Mice , Mucorales/pathogenicity , Mucormycosis/complications , Mucormycosis/immunology , Rhizopus/pathogenicity , Rhizopus/physiology , Virulence
20.
Int J Med Microbiol ; 307(2): 95-107, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27965080

ABSTRACT

Dendritic cells (DCs) and macrophages (MΦ) are critical for protection against pathogenic fungi including Aspergillus fumigatus. To analyze the role of platelets in the innate immune response, human DCs and MΦs were challenged with A. fumigatus in presence or absence of human platelet rich plasma (PRP). Gene expression analyses and functional investigations were performed. A systems biological approach was used for initial modelling of the DC - A. fumigatus interaction. DCs in a quiescent state together with different corresponding activation states were validated using gene expression data from DCs and MΦ stimulated with A. fumigatus. To characterize the influence of platelets on the immune response of DCs and MΦ to A. fumigatus, we experimentally quantified their cytokine secretion, phagocytic capacity, maturation, and metabolic activity with or without platelets. PRP in combination with A. fumigatus treatment resulted in the highest expression of the maturation markers CD80, CD83 and CD86 in DCs. Furthermore, PRP enhanced the capacity of macrophages and DCs to phagocytose A. fumigatus conidia. In parallel, PRP in combination with the innate immune cells significantly reduced the metabolic activity of the fungus. Interestingly, A. fumigatus and PRP stimulated MΦ showed a significantly reduced gene expression and secretion of IL6 while PRP only reduced the IL-6 secretion of A. fumigatus stimulated DCs. The in silico systems biological model correlated well with these experimental data. Different modules centrally involved in DC function became clearly apparent, including DC maturation, cytokine response and apoptosis pathways. Taken together, the ability of PRP to suppress IL-6 release of human DCs might prevent local excessive inflammatory hemorrhage, tissue infarction and necrosis in the human lung.


Subject(s)
Aspergillus fumigatus/immunology , Dendritic Cells/immunology , Macrophages/immunology , Platelet-Rich Plasma/metabolism , Antigens, CD/analysis , Cell Differentiation , Cytokines/metabolism , Gene Expression Profiling , Healthy Volunteers , Humans , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...