Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 29: 204-216, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35892089

ABSTRACT

MicroRNAs (miRNA, miR-) play important roles in disease development. In this study, we identified an anti-proliferative miRNA, miR-212-5p, that is induced in pulmonary artery smooth muscle cells (PASMCs) and lungs of pulmonary hypertension (PH) patients and rodents with experimental PH. We found that smooth muscle cell (SMC)-specific knockout of miR-212-5p exacerbated hypoxia-induced pulmonary vascular remodeling and PH in mice, suggesting that miR-212-5p may be upregulated in PASMCs to act as an endogenous inhibitor of PH, possibly by suppressing PASMC proliferation. Extracellular vesicles (EVs) have been shown recently to be promising drug delivery tools for disease treatment. We generated endothelium-derived EVs with an enriched miR-212-5p load, 212-eEVs, and found that they significantly attenuated hypoxia-induced PH in mice and Sugen/hypoxia-induced severe PH in rats, providing proof of concept that engineered endothelium-derived EVs can be used to deliver miRNA into lungs for treatment of severe PH.

2.
Pulm Circ ; 12(1): e12014, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35506070

ABSTRACT

In the lung, communication between pulmonary vascular endothelial cells (PVEC) and pulmonary artery smooth muscle cells (PASMC) is essential for the maintenance of vascular homeostasis. In pulmonary hypertension (PH), the derangement in their cell-cell communication plays a major role in the pathogenesis of pulmonary vascular remodeling. In this study, we focused on the role of PVEC-derived extracellular vesicles (EV), specifically their microRNA (miRNA, miR-) cargo, in the regulation of PASMC proliferation and vascular remodeling in PH. We found that the amount of pro-proliferative miR-210-3p was increased in PVEC-derived EV in hypoxia (H-EV), which contributes to the H-EV-induced proliferation of PASMC and the development of PH.

3.
Cell Biochem Biophys ; 80(1): 203-216, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34724158

ABSTRACT

Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.


Subject(s)
Mitochondrial Dynamics , Pulmonary Disease, Chronic Obstructive , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Apoptosis , Epithelial Cells/metabolism , Lung/metabolism , Mice , Mitochondria/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Reactive Oxygen Species/metabolism , Smoking/adverse effects
4.
Sci Rep ; 11(1): 17546, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475475

ABSTRACT

We have shown that both reactive oxygen species (ROS) and paxillin tyrosine phosphorylation regulate LPS-induced human lung endothelial permeability. Mitochondrial ROS (mtROS) is known to increase endothelial cell (EC) permeability which requires dynamic change in mitochondrial morphology, events that are likely to be regulated by paxillin. Here, we investigated the role of paxillin and its tyrosine phosphorylation in regulating LPS-induced mitochondrial dynamics, mtROS production and human lung microvascular EC (HLMVEC) dysfunction. LPS, in a time-dependent manner, induced higher levels of ROS generation in the mitochondria compared to cytoplasm or nucleus. Down-regulation of paxillin expression with siRNA or ecto-expression of paxillin Y31F or Y118F mutant plasmids attenuated LPS-induced mtROS in HLMVECs. Pre-treatment with MitoTEMPO, a scavenger of mtROS, attenuated LPS-induced mtROS, endothelial permeability and VE-cadherin phosphorylation. Further, LPS-induced mitochondrial fission in HLMVECs was attenuated by both a paxillin siRNA, and paxillin Y31F/Y118F mutant. LPS stimulated phosphorylation of dynamin-related protein (DRP1) at S616, which was also attenuated by paxillin siRNA, and paxillinY31/Y118 mutants. Inhibition of DRP1 phosphorylation by P110 attenuated LPS-induced mtROS and endothelial permeability. LPS challenge of HLMVECs enhanced interaction between paxillin, ERK, and DRP1, and inhibition of ERK1/2 activation with PD98059 blocked mitochondrial fission. Taken together, these results suggest a key role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, mtROS generation and EC barrier dysfunction.


Subject(s)
Endothelial Cells/metabolism , Mitochondrial Dynamics , Paxillin/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Endothelial Cells/cytology , Humans , Lipopolysaccharides/metabolism , Lung/cytology , Lung/metabolism , Phosphorylation , Tyrosine/metabolism
5.
Cell Biochem Biophys ; 79(3): 575-592, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34085165

ABSTRACT

Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, is generated from sphingosine by sphingosine kinases (SPHKs) 1 and 2 and is metabolized to ∆2-hexadecenal (∆2-HDE) and ethanolamine phosphate by S1P lyase (S1PL) in mammalian cells. We have recently demonstrated the activation of nuclear SPHK2 and the generation of S1P in the nucleus of lung epithelial cells exposed to Pseudomonas aeruginosa. Here, we have investigated the nuclear localization of S1PL and the role of ∆2-HDE generated from S1P in the nucleus as a modulator of histone deacetylase (HDAC) activity and histone acetylation. Electron micrographs of the nuclear fractions isolated from MLE-12 cells showed nuclei free of ER contamination, and S1PL activity was detected in nuclear fractions isolated from primary lung bronchial epithelial cells and alveolar epithelial MLE-12 cells. Pseudomonas aeruginosa-mediated nuclear ∆2-HDE generation, and H3/H4 histone acetylation was attenuated by S1PL inhibitors in MLE-12 cells and human bronchial epithelial cells. In vitro, the addition of exogenous ∆2-HDE (100-10,000 nM) to lung epithelial cell nuclear preparations inhibited HDAC1/2 activity, and increased acetylation of Histone H3 and H4, whereas similar concentrations of S1P did not show a significant change. In addition, incubation of ∆2-HDE with rHDAC1 generated five different amino acid adducts as detected by LC-MS/MS; the predominant adduct being ∆2-HDE with lysine residues of HDAC1. Together, these data show an important role for the nuclear S1PL-derived ∆2-HDE in the modification of HDAC activity, histone acetylation, and chromatin remodeling in lung epithelial cells.


Subject(s)
Aldehyde-Lyases
6.
Antioxidants (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802941

ABSTRACT

Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.

7.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32732285

ABSTRACT

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Cell Proliferation , Lung Neoplasms/enzymology , Mitochondria/metabolism , Neoplasm Proteins/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cardiolipins/genetics , Cardiolipins/metabolism , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Mitochondria/genetics , Neoplasm Proteins/genetics , Neoplasm Transplantation
8.
Int J Mol Sci ; 21(12)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549377

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.


Subject(s)
Gene Regulatory Networks , Idiopathic Pulmonary Fibrosis/metabolism , Lipid Metabolism , Animals , Disease Models, Animal , Gene Expression Regulation , Glycolysis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Signal Transduction
9.
J Biol Chem ; 295(22): 7669-7685, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32327488

ABSTRACT

Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.


Subject(s)
Antigens, CD/metabolism , Blood-Air Barrier/metabolism , Cadherins/metabolism , Endothelial Cells/metabolism , Phospholipase D/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Adherens Junctions/metabolism , Animals , Blood-Air Barrier/cytology , Endothelial Cells/cytology , Female , Humans , Male , Mice , Phosphorylation/drug effects , Thrombin/pharmacology
10.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192225

ABSTRACT

The sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-ß stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-ß-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-ß- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-ß-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-ß- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-ß-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis.


Subject(s)
Cell Cycle Proteins/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lysophospholipids/metabolism , Mitochondria/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing , Alveolar Epithelial Cells/metabolism , Animals , Bleomycin/adverse effects , Fibroblasts/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Gene Deletion , Gene Expression , Hippo Signaling Pathway , Humans , Idiopathic Pulmonary Fibrosis/etiology , Immunohistochemistry , Methanol/analogs & derivatives , Methanol/pharmacology , Mice , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pyrrolidines/pharmacology , Sphingosine/metabolism , Sulfones , Transforming Growth Factor beta1/metabolism , YAP-Signaling Proteins
11.
Article in English | MEDLINE | ID: mdl-32171908

ABSTRACT

Long-chain fatty aldehydes are present in low concentrations in mammalian cells and serve as intermediates in the interconversion between fatty acids and fatty alcohols. The long-chain fatty aldehydes are generated by enzymatic hydrolysis of 1-alkyl-, and 1-alkenyl-glycerophospholipids by alkylglycerol monooxygenase, plasmalogenase or lysoplasmalogenase while hydrolysis of sphingosine-1-phosphate (S1P) by S1P lyase generates trans ∆2-hexadecenal (∆2-HDE). Additionally, 2-chloro-, and 2-bromo- fatty aldehydes are produced from plasmalogens or lysoplasmalogens by hypochlorous, and hypobromous acid generated by activated neutrophils and eosinophils, respectively while 2-iodofatty aldehydes are produced by excess iodine in thyroid glands. The 2-halofatty aldehydes and ∆2-HDE activated JNK signaling, BAX, cytoskeletal reorganization and apoptosis in mammalian cells. Further, 2-chloro- and 2-bromo-fatty aldehydes formed GSH and protein adducts while ∆2-HDE formed adducts with GSH, deoxyguanosine in DNA and proteins such as HDAC1 in vitro. ∆2-HDE also modulated HDAC activity and stimulated H3 and H4 histone acetylation in vitro with lung epithelial cell nuclear preparations. The α-halo fatty aldehydes elicited endothelial dysfunction, cellular toxicity and tissue damage. Taken together, these investigations suggest a new role for long-chain fatty aldehydes as signaling lipids, ability to form adducts with GSH, proteins such as HDACs and regulate cellular functions.


Subject(s)
Aldehyde-Lyases/metabolism , Aldehydes/metabolism , Plasmalogens/metabolism , Signal Transduction , Animals , Histone Deacetylases/metabolism , Humans
12.
Am J Respir Cell Mol Biol ; 55(6): 779-791, 2016 12.
Article in English | MEDLINE | ID: mdl-27438786

ABSTRACT

Insulin-like growth factor (IGF)-1 is a potent mitogen of vascular smooth muscle cells (SMCs), but its role in pulmonary vascular remodeling associated with pulmonary hypertension (PH) is not clear. In an earlier study, we implicated IGF-1 in the pathogenesis of hypoxia-induced PH in neonatal mice. In this study, we hypothesized that hypoxia-induced up-regulation of IGF-1 in vascular smooth muscle is directly responsible for pulmonary vascular remodeling and PH. We studied neonatal and adult mice with smooth muscle-specific deletion of IGF-1 and also used an inhibitor of IGF-1 receptor (IGF-1R), OSI-906, in neonatal mice. We found that, in neonatal mice, SMC-specific deletion of IGF-1 or IGF-1R inhibition with OSI-906 attenuated hypoxia-induced pulmonary vascular remodeling in small arteries, right ventricular hypertrophy, and right ventricular systolic pressure. Pulmonary arterial SMCs from IGF-1-deleted mice or after OSI-906 treatment exhibited reduced proliferative potential. However, in adult mice, smooth muscle-specific deletion of IGF-1 had no effect on hypoxia-induced PH. Our data suggest that vascular smooth muscle-derived IGF-1 plays a critical role in hypoxia-induced PH in neonatal mice but not in adult mice. We speculate that the IGF-1/IGF-1R axis is important in pathogenesis of PH in the developing lung and may be amenable to therapeutic manipulation in this age group.


Subject(s)
Hypertension, Pulmonary/complications , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Hypoxia/metabolism , Insulin-Like Growth Factor I/metabolism , Muscle, Smooth/metabolism , Animals , Animals, Newborn , Blood Pressure/drug effects , Cell Proliferation/drug effects , Chronic Disease , Gene Deletion , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/pathology , Hypoxia/physiopathology , Imidazoles/pharmacology , Insulin-Like Growth Factor I/deficiency , Insulin-Like Growth Factor I/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth/drug effects , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Organ Specificity/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Pyrazines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, IGF Type 1/metabolism , Systole/drug effects , Up-Regulation/drug effects , Vascular Remodeling/drug effects
13.
Sci Rep ; 6: 24900, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27121304

ABSTRACT

There is growing evidence that microRNAs are implicated in pulmonary arterial hypertension (PAH), but underlying mechanisms remain elusive. Here, we identified that miR-223 was significantly downregulated in chronically hypoxic mouse and rat lungs, as well as in pulmonary artery and pulmonary artery smooth muscle cells (PASMC) exposed to hypoxia. Knockdown of miR-223 increased PASMC proliferation. In contrast, miR-223 overexpression abrogated cell proliferation, migration and stress fiber formation. Administering miR-223 agomir in vivo antagonized hypoxia-induced increase in pulmonary artery pressure and distal arteriole muscularization. RhoB, which was increased by hypoxia, was identified as one of the targets of miR-223. Overexpressed miR-223 suppressed RhoB and inhibited the consequent phosphorylation of myosin phosphatase target subunit (MYPT1) and the expression of myosin light chain of myosin II (MLC2), which was identified as another target of miR-223. Furthermore, serum miR-223 levels were decreased in female patients with PAH associated with congenital heart disease. Our study provides the first evidence that miR-223 can regulate PASMC proliferation, migration, and actomyosin reorganization through its novel targets, RhoB and MLC2, resulting in vascular remodeling and the development of PAH. It also highlights miR-223 as a potential circulating biomarker and a small molecule drug for diagnosis and treatment of PAH.


Subject(s)
Cardiac Myosins/metabolism , Hypoxia , MicroRNAs/metabolism , Myocytes, Smooth Muscle/physiology , Myosin Light Chains/metabolism , Vascular Remodeling , rhoB GTP-Binding Protein/metabolism , Animals , Cells, Cultured , Humans , Mice , Rats
14.
Sci Rep ; 5: 12098, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26166214

ABSTRACT

There is growing evidence that microRNAs play important roles in cellular responses to hypoxia and in pulmonary hypertensive vascular remodeling, but the exact molecular mechanisms involved are not fully elucidated. In this study, we identified miR-322 as one of the microRNAs induced in lungs of chronically hypoxic mice and rats. The expression of miR-322 was also upregulated in primary cultured rat pulmonary arterial smooth muscle cells (PASMC) in response to hypoxia. We demonstrated that HIF-1α, but not HIF-2α, transcriptionally upregulates the expression of miR-322 in hypoxia. Furthermore, miR-322 facilitated the accumulation of HIF-1α in the nucleus and promoted hypoxia-induced cell proliferation and migration. Direct targeting BMPR1a and smad5 by miR-322 was demonstrated in PASMCs suggesting that downregulation of BMP-Smad signaling pathway may be mediating the hypoxia-induced PASMC proliferation and migration. Our study implicates miR-322 in the hypoxic proliferative response of PASMCs suggesting that it may be playing a role in pulmonary vascular remodeling associated with pulmonary hypertension.


Subject(s)
Cell Hypoxia/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/pathology , Animals , Cells, Cultured , Down-Regulation/physiology , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Up-Regulation/physiology
15.
Vascul Pharmacol ; 73: 20-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25921925

ABSTRACT

Pulmonary hypertension is a fatal disease characterized by a progressive increase in pulmonary artery pressure accompanied by pulmonary vascular remodeling and increased vasomotor tone. Although some biological pathways have been identified in neonatal hypoxia-induced pulmonary hypertension (PH), little is known regarding the role of growth factors in the pathogenesis of PH in neonates. In this study, using a model of hypoxia-induced PH in neonatal mice, we demonstrate that the growth factor insulin-like growth factor-1 (IGF-1), a potent activator of the AKT signaling pathway, is involved in neonatal PH. After exposure to hypoxia, IGF-1 signaling is activated in pulmonary endothelial and smooth muscle cells in vitro, and the IGF-1 downstream signal pAKT(S473) is upregulated in lungs of neonatal mice. We found that IGF-1 regulates ET-1 expression in pulmonary endothelial cells and that IGF-1 expression is regulated by histone deacetylases (HDACs). In addition, there is a differential cytosine methylation site in the IGF-1 promoter region in response to neonatal hypoxia. Moreover, inhibition of HDACs with apicidin decreases neonatal hypoxia-induced global DNA methylation levels in lungs and specific cytosine methylation levels around the pulmonary IGF-1 promoter region. Finally, HDAC inhibition with apicidin reduces chronic hypoxia-induced activation of IGF-1/pAKT signaling in lungs and attenuates right ventricular hypertrophy and pulmonary vascular remodeling. Taken together, we conclude that IGF-1, which is epigenetically regulated, is involved in the pathogenesis of pulmonary hypertension in neonatal mice. This study implicates a novel HDAC/IGF-1 epigenetic pathway in the regulation of hypoxia-induced PH and warrants further study of the role of IGF-1 in neonatal pulmonary hypertensive disease.


Subject(s)
Arterial Pressure/genetics , Epigenesis, Genetic , Hypertension, Pulmonary/genetics , Hypoxia/complications , Insulin-Like Growth Factor I/genetics , Pulmonary Artery/physiopathology , Signal Transduction/genetics , Animals , Animals, Newborn , Arterial Pressure/drug effects , Cells, Cultured , DNA Methylation , Disease Models, Animal , Endothelin-1/metabolism , Epigenesis, Genetic/drug effects , Gene Expression Regulation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Insulin-Like Growth Factor I/metabolism , Mice, Inbred C57BL , Phosphorylation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , RNA Interference , Signal Transduction/drug effects , Time Factors , Transfection , Vascular Remodeling
16.
FEBS Lett ; 588(24): 4677-85, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25447536

ABSTRACT

Chronic hypoxia triggers pulmonary vascular remodeling, which is associated with de-differentiation of pulmonary artery smooth muscle cells (PASMC). Here, we show that miR-20a expression is up-regulated in response to hypoxia in both mouse and human PASMC. We also observed that miR-20a represses the protein kinase, cGMP-dependent, type I (PRKG1) gene and we identified two crucial miR-20a binding sites within the coding region of PRKG1. Functional studies showed that miR-20a promotes the proliferation and migration of human PASMC, whereas it inhibits their differentiation. In summary, we provided a possible mechanism by which hypoxia results in decreased PRKG1 expression and in the phenotypic switching of PASMC.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/genetics , MicroRNAs/genetics , Myocytes, Smooth Muscle/metabolism , Open Reading Frames/genetics , Pulmonary Artery/cytology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Hypoxia , Cell Movement/genetics , Cell Proliferation/genetics , Conserved Sequence , Gene Expression Regulation, Enzymologic/genetics , Humans , Lung/metabolism , Mice , Myocytes, Smooth Muscle/cytology , Phenotype
17.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L537-44, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25128522

ABSTRACT

Pulmonary hypertension (PH) is a chronic disease characterized by a progressive increase in vasomotor tone, narrowing of the vasculature with structural remodeling, and increase in pulmonary vascular resistance. Current treatment strategies include nitric oxide therapy and methods to increase cGMP-mediated vasodilatation. cGMP-dependent protein kinases (PKG) are known mediators of nitric oxide- and cGMP-induced vasodilatation. Deletion of PKG-1 in mice has been shown to induce PH, however, the exact mechanisms by which loss of PKG-1 function leads to PH is not known. In a mouse model with a selective mutation in the NH2-terminus leucine zipper protein interaction domain of PKG-1α [leucine zipper mutant (LZM)], we found a progressive increase in right ventricular systolic pressure and right heart hypertrophy compared with wild-type (WT) mice and increased RhoA-GTPase activity in the lungs. When exposed to chronic hypoxia, LZM mice developed modestly enhanced right ventricular remodeling compared with WT mice. Tadalafil, a phosphodiesterase-5 inhibitor that increases cGMP levels, significantly attenuated hypoxia-induced cardiopulmonary remodeling in WT mice but had no effect in LZM mice. We conclude that a functional leucine zipper domain in PKG-1α is essential for maintenance of a low pulmonary vascular tone in normoxia and for cGMP-mediated beneficial effects of phosphodiesterase-5 inhibition in hypoxic cardiopulmonary remodeling.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/genetics , Hypertension, Pulmonary/enzymology , Pulmonary Artery/physiopathology , Animals , Carbolines/pharmacology , Carbolines/therapeutic use , Cell Hypoxia , Cells, Cultured , Drug Evaluation, Preclinical , Female , Gene Expression , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/enzymology , Lung/blood supply , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Mutation , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Circulation/drug effects , Tadalafil , Vasodilation , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use , Ventricular Remodeling/drug effects , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
18.
J Biol Chem ; 288(35): 25414-25427, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23853098

ABSTRACT

Abnormal proliferation and phenotypic modulation of pulmonary artery smooth muscle cells (PASMC) contributes to the pathogenesis of numerous cardiovascular disorders, including pulmonary arterial hypertension (PAH). The nuclear factor of activated T cells (NFAT) signaling pathway is linked to PASMC proliferation and PAH. MicroRNAs (miRNAs) are small non-coding RNAs that function in diverse biological processes. To systemically identify the specific miRNAs that regulate the NFAT pathway, a human primary miRNA library was applied for cell-based high throughput screening with the NFAT luciferase reporter system. Eight miRNAs were found to modulate NFAT activity efficiently. Of them, miR-124 robustly inhibited NFAT reporter activity and decreased both the dephosphorylation and the nuclear translocation of NFAT. miR-124 also inhibited NFAT-dependent transcription of IL-2 in Jurkat T cells. miR-124 exerted its effects by targeting multiple genes, including a known component of the NFAT pathway, NFATc1, and two new regulators of NFAT signaling, CAMTA1 (calmodulin-binding transcription activator 1) and PTBP1 (polypyrimidine tract-binding protein 1). Physiologically, miR-124 was down-regulated by hypoxia in human PASMC, consistent with the activation of NFAT during this process. Down-regulation of miR-124 was also observed in 3-week hypoxia-treated mouse lungs. Furthermore, the overexpression of miR-124 not only inhibited human PASMC proliferation but also maintained its differentiated phenotype by repressing the NFAT pathway. Taken together, our data provide the first evidence that miR-124 acts as an inhibitor of the NFAT pathway. Down-regulation of miR-124 in hypoxia-treated PASMC and its antiproliferative and prodifferentiation effects imply a potential value for miR-124 in the treatment of PAH.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary/metabolism , MicroRNAs/biosynthesis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NFATC Transcription Factors/metabolism , Pulmonary Artery/metabolism , Transcriptional Activation , Animals , Cell Hypoxia/genetics , Down-Regulation/genetics , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Jurkat Cells , Mice , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , NFATC Transcription Factors/genetics , Pulmonary Artery/pathology , Signal Transduction/genetics
19.
Am J Physiol Lung Cell Mol Physiol ; 303(11): L1001-10, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23043075

ABSTRACT

High-altitude long-term hypoxia (LTH) is known to induce pulmonary arterial smooth muscle cell (PASMC) proliferation in the fetus, leading to pulmonary arterial remodeling and pulmonary hypertension of the newborn. The mechanisms underlying these conditions remain enigmatic however. We hypothesized that epigenetic alterations in fetal PASMC induced by high-altitude LTH may play an important role in modulating their proliferation during pulmonary arterial remodeling. To test this hypothesis, we have analyzed epigenetic alterations in the pulmonary vasculature of fetal lambs exposed to high-altitude LTH [pregnant ewes were kept at 3,801 m altitude from ~40 to 145 days gestation] or to sea level atmosphere. Intrapulmonary arteries were isolated, and fetal PASMC were cultured from both control and LTH fetuses. Compared with controls, in LTH fetus pulmonary arteries measurements of histone acetylation and global DNA methylation demonstrated reduced levels of global histone 4 acetylation and DNA methylation, accompanied by the loss of the cyclin-dependent kinase inhibitor p21. Treatment of LTH fetal PASMCs with histone deacetylase (HDAC) inhibitor trichostatin A decreased their proliferation rate, in part because of altered expression of p21 at both RNA and protein level. In PASMC of LTH fetuses, HDAC inhibition also decreased PDGF-induced cell migration and ERK1/2 activation and modulated global DNA methylation. On the basis of these observations, we propose that epigenetic alterations (reduced histone acetylation and DNA methylation) caused by chronic hypoxia leads to fetal PASMC proliferation and vessel remodeling associated with vascular proliferative disease and that this process is regulated by p21.


Subject(s)
Cell Movement , Cell Proliferation , Fetal Hypoxia/pathology , Histones/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/pathology , Acclimatization , Acetylation , Altitude , Animals , Cell Cycle Checkpoints , Cell Proliferation/drug effects , Cell Survival , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic , Female , Fetal Hypoxia/metabolism , Fetus/pathology , Gene Expression , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , MAP Kinase Signaling System , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Peptides, Cyclic/pharmacology , Platelet-Derived Growth Factor/physiology , Pregnancy , Protein Processing, Post-Translational , Pulmonary Artery/metabolism , Sheep , Time Factors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 303(8): L682-91, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22886504

ABSTRACT

MicroRNAs (miRNAs) were recently reported to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH), but it is not clear which miRNAs are important or what pathways are involved in the process. Because hypoxia is an important stimulus for human pulmonary artery smooth muscle cell (HPASMC) proliferation and PAH, we performed miRNA microarray assays in hypoxia-treated and control HPASMC. We found that miR-210 is the predominant miRNA induced by hypoxia in HPASMC. Induction of miR-210 was also observed in whole lungs of mice with chronic hypoxia-induced PAH. We found that transcriptional induction of miR-210 in HPASMC is hypoxia-inducible factor-1α dependent. Inhibition of miR-210 in HPASMC caused a significant decrease in cell number due to increased apoptosis. We found that miR-210 appears to mediate its antiapoptotic effects via the regulation of transcription factor E2F3, a direct target of miR-210. Our results have identified miR-210 as a hypoxia-inducible miRNA both in vitro and in vivo, which inhibits pulmonary vascular smooth muscle cell apoptosis in hypoxia by specifically repressing E2F3 expression.


Subject(s)
Apoptosis/genetics , Hypertension, Pulmonary/genetics , Hypoxia/genetics , MicroRNAs/genetics , Myocytes, Smooth Muscle/physiology , Animals , Chronic Disease , Disease Models, Animal , Down-Regulation/genetics , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/pathology , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Myocytes, Smooth Muscle/cytology , Phenotype , Primary Cell Culture , Pulmonary Artery/cytology , Pulmonary Artery/physiology , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...