Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 67(4): 789-96, 2013.
Article in English | MEDLINE | ID: mdl-23306256

ABSTRACT

Activated sludge models have assumed that a portion of organic solids in municipal wastewater influent is unbiodegradable. Also, it is assumed that solids from biomass decay cannot be degraded further. The paper evaluates these assumptions based on data from systems operating at higher than typical sludge retention times (SRTs), including membrane bioreactor systems with total solids retention (no intentional sludge wastage). Data from over 30 references and with SRTs of up to 400 d were analysed. A modified model that considers the possible degradation of the two components is proposed. First order degradation rates of approximately 0.007 d(-1) for both components appear to improve sludge production estimates. Factors possibly influencing these degradation rates such as wastewater characteristics and bioavailability are discussed.


Subject(s)
Bioreactors , Models, Theoretical , Sewage , Membranes, Artificial
2.
Water Res ; 46(9): 2837-50, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22475080

ABSTRACT

The goal of this study was to determine the effect of a long sludge retention time on the biodegradation of the endogenous residue in membrane digestion units receiving a daily feed of sludge and operated under either aerobic or intermittently aerated (22 h off-2 h on) conditions. The mixed liquor for these experiments was generated in a 10.4 day sludge retention time membrane bioreactor fed with a synthetic and completely biodegradable influent with acetate as the sole carbon source. It had uniform characteristics and consisted of only two components, heterotrophic biomass X(H) and endogenous residue X(E). Membrane digestion unit experiments were conducted for 80 days without any sludge wastage except for some sampling. The dynamic behaviour of generation and consumption of filtered organic digestion products was characterized in the membrane digestion unit systems using three pore filter sizes. Results from this investigation indicated that the colloidal matter with size between 0.04 µm and 0.45 µm was shown to contain a recalcitrant fraction possibly composed of polysaccharides bound to proteins which accumulated in the membrane digestion unit under both conditions. Modelling the membrane digestion unit results by considering a first-order decay of the endogenous residue allowed to determine values of the endogenous residue decay rate of 0.0065 and 0.0072 d(-1) under fully aerobic and intermittently aerated conditions, respectively. The effect of temperature on the endogenous decay rate was assessed for the intermittently aerated conditions in batch tests using thickened sludge from tests gave an endogenous decay rate constant of 0.0075 d(-1) at 20 °C and an Arrhenius temperature correction factor of 1.033.


Subject(s)
Air/analysis , Biodegradation, Environmental , Bioreactors , Membranes, Artificial , Sewage
3.
Water Res ; 46(3): 653-68, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22172563

ABSTRACT

The activated sludge process generates an endogenous residue (X(E)) as a result of heterotrophic biomass decay (X(H)). A literature review yielded limited information on the differences between X(E) and X(H) in terms of chemical composition and content of extracellular polymeric substances (EPS). The objective of this project was to characterize the chemical composition (x, y, z, a, b and c in C(x)H(y)O(z)N(a)P(b)S(c)) of the endogenous and the active fractions and EPS of activated sludge from well designed experiments. To isolate X(H) and X(E) in this study, activated sludge was generated in a 200L pilot-scale aerobic membrane bioreactor (MBR) fed with a soluble and completely biodegradable synthetic influent of sodium acetate as the sole carbon source. This influent, which contained no influent unbiodegradable organic or inorganic particulate matter, allowed the generation of a sludge composed essentially of two fractions: heterotrophic biomass X(H) and an endogenous residue X(E), the nitrifying biomass being negligible. The endogenous decay rate and the active biomass fraction of the MBR sludge were determined in 21-day aerobic digestion batch tests by monitoring the VSS and OUR responses. Fractions of X(H) and X(E) were respectively 68% and 32% in run 1 (MBR at 5.2 day SRT) and 59% and 41% in run 2 (MBR at 10.4 day SRT). The endogenous residue was isolated by subjecting the MBR sludge to prolonged aerobic batch digestion for 3 weeks, and was characterized in terms of (a) elemental analysis for carbon, nitrogen, phosphorus and sulphur; and (b) content of EPS. The MBR sludge was characterized using the same procedures (a and b). Knowing the proportions of X(H) and X(E) in this sludge, it was possible to characterize X(H) by back calculation. Results from this investigation showed that the endogenous residue had a chemical composition different from that of the active biomass with a lower content of inorganic matter (1:4.2), of nitrogen (1:2.9), of phosphorus (1:5.3) and of sulphur (1:3.2) but a similar content of carbon (1:0.98). Based on these elemental analyses, chemical composition formulae for X(H) and X(E) were determined as CH(1.240)O(0.375)N(0.200)P(0.0172)S(0.0070) and CH(1.248)O(0.492)N(0.068)P(0.0032)S(0.0016), respectively. Data from EPS analyses also confirmed this difference in structure between X(E) and X(H) with an EPS content of 11-17% in X(E)versus 26-40% in X(H).


Subject(s)
Biomass , Heterotrophic Processes/physiology , Sewage/chemistry , Sewage/microbiology , Biological Oxygen Demand Analysis , Biopolymers/chemistry , Bioreactors/microbiology , Kinetics , Membranes, Artificial , Nitrogen/analysis , Phosphorus/analysis , Prokaryotic Cells/metabolism , Volatilization
4.
Water Res ; 44(7): 2179-88, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20074768

ABSTRACT

This study evaluated the potential biodegradability of the endogenous residue in activated sludge subjected to batch digestion under either non-aerated or alternating aerated and non-aerated conditions. Mixed liquor for the tests was generated in a 200 L pilot-scale aerobic membrane bioreactor (MBR) operated at a 5.2 days SRT. The MBR system was fed a soluble and completely biodegradable synthetic influent composed of sodium acetate as the sole carbon source. This influent, which contained no influent unbiodegradable organic or inorganic materials, allowed to generate sludge composed of essentially two fractions: a heterotrophic biomass X(H) and an endogenous residue X(E), the nitrifying biomass being negligible (less than 2%). The endogenous decay rate and the active biomass fraction of the MBR sludge were determined in 21-day aerobic digestion batch tests by monitoring the VSS and OUR responses. Fractions of X(H) and X(E): 68% and 32% were obtained, respectively, at a 5.2 days SRT. To assess the biodegradability of X(E), two batch digestion units operated at 35 degrees C were run for 90 days using thickened sludge from the MBR system. In the first unit, anaerobic conditions were maintained while in the second unit, alternating aerated and non-aerated conditions were applied. Data for both units showed apparent partial biodegradation of the endogenous residue. Modeling the batch tests indicated endogenous residue decay rates of 0.005 d(-1) and 0.012 d(-1) for the anaerobic unit and the alternating aerated and non-aerated conditions, respectively.


Subject(s)
Bioreactors , Sewage/chemistry , Anaerobiosis , Biodegradation, Environmental , Biomass , Kinetics , Models, Theoretical , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Sewage/microbiology , Time Factors , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...