Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 154: 74-79, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38909564

ABSTRACT

INTRODUCTION: Rabbits are routinely used as a natural model of fetal growth restriction (FGR); however, no studies have confirmed that rabbits have FGR. This study aimed to characterize the fetoplacental unit (FPU) in healthy pregnant rabbits using diffusion-weighted MRI and stereology. A secondary objective of the study was to describe the associations among findings from diffusion-weighted MRI (DW-MRI), fetal weight measurement and histological analysis of the placenta. METHODS: Pregnant rabbits underwent DW-MRI under general anesthesia on embryonic day 28 of pregnancy. MR imaging was performed at 3.0 T. The apparent diffusion coefficient (ADC) values were calculated for the fetal brain, liver, and placenta. The placenta was analyzed by stereology (volume density of trophoblasts, the maternal blood space and fetal vessels). Each fetus and placenta were weighed. Two groups of fetuses were defined according to the position in the uterine horn (Cervix group versus Ovary group). RESULTS: We analyzed 20 FPUs from 5 pregnant rabbits. Fetuses and placentas were significantly lighter in the Cervix group than in the Ovary group (34.7 ± 3.7 g vs. 40.2 ± 5.4 g; p = 0.02). Volume density analysis revealed that the percentage of fetal vessels, the maternal blood space and trophoblasts was not significantly affected by the position of the fetus in the uterine horn. There was no difference in ADC values according to the position of the fetus in the uterine horn, and there was no correlation between ADC values and fetal weight. DISCUSSION: The findings of a multimodal evaluation of the placenta in a rabbit model of FGR suggested is not a natural model of fetal growth restriction.

2.
Diagnostics (Basel) ; 12(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36292116

ABSTRACT

This study evaluated the performances of immunoassays (LFIA and ELISA) designed for SARS-CoV-2 Antigen (Ag)-detection in nasopharyngeal (NP) and serum samples in comparison to RT-PCR. NP samples from patients with respiratory symptoms (183 RT-PCR-positive and 74 RT-PCR-negative samples) were collected from March to April and November to December 2020. Seroconversion and antigen dynamics were assessed by symptom onset and day of RT-PCR diagnosis. Serum samples from 87 COVID-19 patients were used to investigate the added value of Ag quantification, at diagnosis and during follow-up. The sensitivity of COVID-VIRO-LFIA on samples with Ct ≤ 33, considered as the contagious threshold, was 86% on NPs (CI 95%: 79-90.5) and 76% on serum samples (CI 95%: 59.4-88), with a specificity of 100%. Serum N-Ag was detected during active infection as early as day two from symptom onset, with a diagnostic sensitivity of 81.5%. Within one week of symptom onset, diagnostic sensitivity and specificity reached 90.9% (95% CI, 85.1%-94.6%) and 98.3% (95% CI, 91.1%-99.9%), respectively. Serum N-Ag concentration closely correlated with disease severity. Longitudinal analysis revealed the simultaneous increase of antibodies and decrease of N-Ag. Sensitivities of COVID-VIRO-LFIA and COV-QUANTO-ELISA tests on NP and serum samples were close to 80%. They are suitable COVID-19-laboratory diagnostic tests, particularly when blood samples are available, thus reducing the requirement for NP sampling, and subsequent PCR analysis. ELISA titers may help to identify patients at risk of poor outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...