Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(18): eadf0108, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134157

ABSTRACT

Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease. Pretreatment with ZOL, a U.S. Food and Drug Administration-approved bisphosphonate prescribed to mitigate pathological fracture in mCRPC patients, resulted in CAR-independent activation of γδ CAR-T cells, increased cytokine secretion, and enhanced antitumor efficacy. These data show that the activity of the endogenous Vγ9Vδ2 T cell receptor is preserved in CAR-T cells, allowing for dual-receptor recognition of tumor cells. Collectively, our findings support the use of γδ CAR-T cell therapy for mCRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Chimeric Antigen , United States , Male , Humans , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/therapy , Zoledronic Acid/pharmacology , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy
2.
Front Oncol ; 13: 1124272, 2023.
Article in English | MEDLINE | ID: mdl-37035164

ABSTRACT

Background: Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation. Therefore, targeting these cancer stem cells will allow for the development of more effective therapeutic strategies against GBM. We have previously identified several 7-amino acid length peptides which specifically target GSCs through in vitro and in vivo phage display biopanning. Methods and results: We have combined two of these peptides to create a dual peptide construct (EV), and demonstrated its ability to bind GSCs in vitro and target intracranial GBM in mouse models. A peptide pull-down performed with peptide EV followed by mass spectrometry determined N-cadherin as the binding partner of the peptide, which was validated by enzyme-linked immunosorbent assay and surface plasmon resonance. To develop cytotoxic cellular products aimed at specifically targeting GSCs, chimeric antigen receptors (CARs) were engineered containing the peptide EV in place of the single-chain variable fragment (scFv) as the antigen-binding domain. EV CAR-transduced T cells demonstrated specific reactivity towards GSCs by production of interferon-gamma when exposed to GSCs, in addition to the induction of GSC-specific apoptosis as illustrated by Annexin-V staining. Conclusion: These results exemplify the use of phage display biopanning for the isolation of GSC-targeting peptides, and their potential application in the development of novel cytotoxic therapies for GBM.

3.
Front Immunol ; 13: 828734, 2022.
Article in English | MEDLINE | ID: mdl-35651611

ABSTRACT

During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.


Subject(s)
B7-H1 Antigen , T-Lymphocytes , Animals , B-Lymphocytes , Lymphocyte Activation , Mice , Plasma Cells
4.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35764366

ABSTRACT

BACKGROUND: Neuroendocrine tumors (NETs) overexpress somatostatin receptors (SSTRs). METHODS: We developed a second-generation, ligand-based, anti-SSTR chimeric antigen receptor (CAR) incorporating the somatostatin analog octreotide in its extracellular moiety. RESULTS: Anti-SSTR CAR T cells exerted antitumor activity against SSTR+NET cell linesin vitro. The killing activity was highly specific, as demonstrated by the lack of CAR T cell reactivity against NET cells engineered to express mutated variants of SSTR2/5 by CRISPR/Cas9. When adoptively transferred in NSG mice, anti-SSTR CAR T cells induced significant antitumor activity against human NET xenografts. Although anti-SSTR CAR T cells could recognize the murine SSTRs as shown by their killing ability against murine NET cells, no obvious deleterious effects on SSTR-expressing organs such as the brain or the pancreas were observed in mice. CONCLUSIONS: Taken together, our results establish anti-SSTR CAR T cells as a potential candidate for early phase clinical investigations in patients with NETs. More broadly, the demonstration that a known peptide drug can direct CAR T cell targeting may streamline the potential utility of multiple peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers.


Subject(s)
Nerve Tissue Proteins/metabolism , Neuroendocrine Tumors , Animals , Humans , Ligands , Mice , Neuroendocrine Tumors/drug therapy , Octreotide , Somatostatin/therapeutic use
6.
Nat Commun ; 9(1): 1628, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691398

ABSTRACT

Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Galectin 3/deficiency , Interferon-gamma/immunology , Animals , Autoantibodies/immunology , Autoimmune Diseases/genetics , Autoimmunity , B-Lymphocytes/immunology , Female , Galectin 3/genetics , Galectin 3/immunology , Germinal Center/immunology , Humans , Interferon-gamma/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Inbred C57BL
7.
Front Immunol ; 7: 626, 2016.
Article in English | MEDLINE | ID: mdl-28066435

ABSTRACT

Reactive oxygen and nitrogen species are important microbicidal agents and are also involved in lymphocyte unresponsiveness during experimental infections. Many of the biological effects attributed to nitric oxide are mediated by peroxynitrites, which induce the nitration of immune cells, among others. Our group has demonstrated that nitric oxide is involved in the suppressive activity of myeloid-derived suppressor cells in Trypanosoma cruzi-infected mice, with a higher number of CD8+ T cells suffering surface-nitration compared to uninfected controls. Studying the functional and phenotypic features of peripheral CD8+ T cells from chagasic patients and human cells experimentally infected with T. cruzi, we found that different regulatory mechanisms impaired the effector functions of T cytotoxic population from seropositive patients. Peripheral leukocytes from chagasic patients showed increased nitric oxide production concomitant with increased tyrosine nitration of CD8+ T cells. Additionally, this cytotoxic population exhibited increased apoptotic rate, loss of the TCRζ-chain, and lower levels of CD107a, a marker of degranulation. Strikingly, IL-6 stimulation of in vitro-infected peripheral blood mononuclear cells obtained from healthy donors, blunted T. cruzi-induced nitration of CD3+CD8+ cells, and increased their survival. Furthermore, the treatment of these cultures with an IL-6 neutralizing antibody increased the percentage of T. cruzi-induced CD8+ T cell nitration and raised the release of nitric oxide. The results suggest that the under-responsiveness of cytotoxic T cell population observed in the setting of long-term constant activation of the immune system could be reverted by the pleiotropic actions of IL-6, since this cytokine improves its survival and effector functions.

8.
PLoS Pathog ; 8(4): e1002658, 2012.
Article in English | MEDLINE | ID: mdl-22577359

ABSTRACT

Members of the IL-17 cytokine family play an important role in protection against pathogens through the induction of different effector mechanisms. We determined that IL-17A, IL-17E and IL-17F are produced during the acute phase of T. cruzi infection. Using IL-17RA knockout (KO) mice, we demonstrate that IL-17RA, the common receptor subunit for many IL-17 family members, is required for host resistance during T. cruzi infection. Furthermore, infected IL-17RA KO mice that lack of response to several IL-17 cytokines showed amplified inflammatory responses with exuberant IFN-γ and TNF production that promoted hepatic damage and mortality. Absence of IL-17RA during T. cruzi infection resulted in reduced CXCL1 and CXCL2 expression in spleen and liver and limited neutrophil recruitment. T. cruzi-stimulated neutrophils secreted IL-10 and showed an IL-10-dependent suppressive phenotype in vitro inhibiting T-cell proliferation and IFN-γ production. Specific depletion of Ly-6G+ neutrophils in vivo during T. cruzi infection raised parasitemia and serum IFN-γ concentration and resulted in increased liver pathology in WT mice and overwhelming wasting disease in IL-17RA KO mice. Adoptively transferred neutrophils were unable to migrate to tissues and to restore resistant phenotype in infected IL-17RA KO mice but migrated to spleen and liver of infected WT mice and downregulated IFN-γ production and increased survival in an IL-10 dependent manner. Our results underscore the role of IL-17RA in the modulation of IFN-γ-mediated inflammatory responses during infections and uncover a previously unrecognized regulatory mechanism that involves the IL-17RA-mediated recruitment of suppressive IL-10-producing neutrophils.


Subject(s)
Chagas Disease/immunology , Neutrophils/immunology , Receptors, Interleukin-17/immunology , Signal Transduction , Trypanosoma cruzi/immunology , Animals , Cells, Cultured , Inflammation/immunology , Interferon-gamma/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-17/immunology , Liver/immunology , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Neutrophils/metabolism , Spleen/immunology , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...