Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Oncoimmunology ; 12(1): 2246319, 2023.
Article in English | MEDLINE | ID: mdl-37885970

ABSTRACT

Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ, granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Mice , Animals , Female , T-Lymphocytes, Regulatory/metabolism , CTLA-4 Antigen , CD4-Positive T-Lymphocytes , Breast Neoplasms/metabolism
2.
Science ; 378(6620): eabn5647, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356142

ABSTRACT

T cells are the major arm of the immune system responsible for controlling and regressing cancers. To identify genes limiting T cell function, we conducted genome-wide CRISPR knockout screens in human chimeric antigen receptor (CAR) T cells. Top hits were MED12 and CCNC, components of the Mediator kinase module. Targeted MED12 deletion enhanced antitumor activity and sustained the effector phenotype in CAR- and T cell receptor-engineered T cells, and inhibition of CDK8/19 kinase activity increased expansion of nonengineered T cells. MED12-deficient T cells manifested increased core Meditator chromatin occupancy at transcriptionally active enhancers-most notably for STAT and AP-1 transcription factors-and increased IL2RA expression and interleukin-2 sensitivity. These results implicate Mediator in T cell effector programming and identify the kinase module as a target for enhancing potency of antitumor T cell responses.


Subject(s)
Cyclin C , Mediator Complex , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Mediator Complex/genetics , T-Lymphocytes/immunology , Transcription Factors/genetics , Genome-Wide Association Study , Cyclin C/genetics , Genetic Testing , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy
3.
Front Immunol ; 12: 713132, 2021.
Article in English | MEDLINE | ID: mdl-34386013

ABSTRACT

Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cellular Senescence , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Breast Neoplasms/etiology , CD57 Antigens/metabolism , Case-Control Studies , Cellular Senescence/genetics , Cellular Senescence/immunology , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Humans , Immunophenotyping , Lectins, C-Type/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/pathology , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
4.
BioDrugs ; 33(6): 647-659, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31552606

ABSTRACT

The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.


Subject(s)
Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy, Adoptive/methods
5.
Sci Signal ; 12(568)2019 02 12.
Article in English | MEDLINE | ID: mdl-30755478

ABSTRACT

Adoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species. This phenomenon was independent of the choice of costimulatory domains, or the hinge/transmembrane region. Rather, it was dependent on the size of the intracellular domains. Moreover, the second-generation design was also associated with stronger phosphorylation of downstream secondary messengers, as evidenced by global phosphoproteome analysis. These results suggest that second-generation CARs can activate additional sources of CD3ζ signaling, and this may contribute to more intense signaling and superior antitumor efficacy that they display compared to third-generation CARs. Moreover, our results provide a deeper understanding of how CARs interact physically and/or functionally with endogenous T cell molecules, which will inform the development of novel optimized immune receptors.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Proteomics/methods , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays , Animals , Binding Sites/immunology , Cell Line, Tumor , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasms/immunology , Neoplasms/pathology , Protein Binding/immunology , Proteome/immunology , Proteome/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
6.
Front Immunol ; 9: 2241, 2018.
Article in English | MEDLINE | ID: mdl-30327652

ABSTRACT

Background: B cells play an important role in the development and maintenance of rheumatoid arthritis (RA). Although IL-10-producing B cells represent a major subset of regulatory B cells (Bregs) able to suppress autoimmune and inflammatory responses, recent reports showed that B cell-mediated immune suppression may also occur independent of IL-10. For instance, B cells can modulate T cell immune responses through the expression of regulatory molecules such as PD-L1. So far, PD-L1-expressing B cells have not been analyzed in RA patients. Objective: To analyze the frequency of PD-L1-expressing B cells in the peripheral blood of RA patients compared to healthy controls (HC) matched for sex and age, their function on T cell response and their changes in response to therapy. Methods: Fresh peripheral blood B cells from RA patients and HC were characterized by flow cytometry and their functionality assessed in a co-culture system with autologous T cells. Results: The frequencies of CD19+PD-L1+ B cells, CD24hiCD38-PD-L1+ and CD24hiCD38hiPD-L1+ B cells were significantly lower in untreated RA patients than in HC. In a follow-up study, the frequencies of PD-L1+ B cells (CD19+PD-L1+ B cells, CD24hiCD38-PD-L1+ and CD24hiCD38hiPD-L1+ B cells) increased significantly after treatment in good responder patients, although the frequency of total CD24hiCD38hi B cells decreased. CD19+ B cells from untreated RA patients and HC upregulated PD-L1 expression similarly upon stimulation with CpG plus IL-2 and were able to suppress, in vitro, CD8+ T cell proliferation and cytokine production in a PD-L1-dependent manner. Conclusions: Our results show that PD-L1+ B cells exhibiting T cell suppressive capacity are significantly decreased in untreated RA patients but increase in response to successful treatment. PD-L1 expression on B cells from RA patients can be modulated in vitro and PD-L1+ B cells could thus provide new perspectives for future treatment strategies.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , B-Lymphocytes, Regulatory/drug effects , B-Lymphocytes, Regulatory/immunology , B7-H1 Antigen/metabolism , ADP-ribosyl Cyclase 1/metabolism , Adult , Aged , Aged, 80 and over , Antigens, CD19/metabolism , Arthritis, Rheumatoid/blood , CD24 Antigen/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Coculture Techniques , Female , Flow Cytometry , Follow-Up Studies , Humans , Male , Membrane Glycoproteins/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Statistics, Nonparametric , Young Adult
7.
Front Immunol ; 9: 2347, 2018.
Article in English | MEDLINE | ID: mdl-30364284

ABSTRACT

The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chagas Disease/immunology , Chagas Disease/metabolism , Receptors, Interleukin-17/metabolism , Signal Transduction , Trypanosoma cruzi/immunology , Adoptive Transfer , Animals , Apoptosis , Cell Survival , Chagas Disease/microbiology , Cytokines/metabolism , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunomodulation/genetics , Interleukin-17/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Male , Mice , Mice, Knockout , Receptors, Interleukin-17/deficiency , Transcription, Genetic
9.
Arthritis Rheumatol ; 70(9): 1429-1439, 2018 09.
Article in English | MEDLINE | ID: mdl-29648684

ABSTRACT

OBJECTIVE: Inhibitory receptors are essential for the regulation of effector immune responses and may play critical roles in autoimmune diseases. We evaluated whether inhibitory receptor expression on T cells from patients with rheumatoid arthritis (RA) were correlated with immune activation, disease activity, and response to treatment, as well as whether inhibitory receptor-mediated pathways were functional. METHODS: Using flow cytometry, we performed extensive phenotypic and functional evaluation of CD4+ and CD8+ T cells from the blood and synovial fluid (SF) of RA patients ex vivo and after culture. The relationship of each parameter with the Disease Activity Score in 28 joints using the erythrocyte sedimentation rate (DAS28-ESR) and response to treatment was examined. RESULTS: In RA patients with low levels of T cell activation, inhibitory receptor expression showed an inverse relationship with the DAS28-ESR. The frequency of T cells expressing multiple inhibitory receptors was reduced in untreated RA patients but returned to normal levels in treated patients. RA patients who responded to treatment showed an augmented frequency of inhibitory receptor-expressing T cells that correlated with reduced inflammatory cytokine production in comparison to nonresponders. Higher frequencies of effector and memory T cells that expressed multiple inhibitory receptors were seen in SF than in peripheral blood. Notably, inhibitory pathways were operative in blood and synovial T cells from all RA patients, although cells from nonresponder patients were less sensitive to inhibition. CONCLUSION: Inhibitory receptor expression on T cells from RA patients is inversely correlated with effector T cell function and disease activity and may predict response to treatment. Furthermore, different inhibitory pathways are functional and cooperatively suppress synovial T cells, providing a rationale for new treatment strategies to regulate acute local inflammation.


Subject(s)
Arthritis, Rheumatoid/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Costimulatory and Inhibitory T-Cell Receptors/metabolism , Severity of Illness Index , Adult , Aged , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Biomarkers/metabolism , Blood Sedimentation , Cytokines/metabolism , Female , Flow Cytometry , Humans , Inflammation , Lymphocyte Activation , Male , Middle Aged , Synovial Fluid/metabolism , Young Adult
10.
Biochem Pharmacol ; 153: 35-45, 2018 07.
Article in English | MEDLINE | ID: mdl-29278675

ABSTRACT

The recent years have seen significant progress in the development of systemic therapies to treat patients with advanced melanoma. Use of these new treatment modalities, which include immune checkpoint inhibitors and small molecule BRAF inhibitors, lead to increased overall survival and better outcomes. Although revolutionary, these therapies are often less effective against melanoma brain metastases, and frequently the CNS is the major site of treatment failure. The development of brain metastases remains a serious complication of advanced melanoma that is associated with significant morbidity and mortality. New approaches to both prevent the development of brain metastases and treat established disease are urgently needed. In this review we will outline the mechanisms underlying the development of melanoma brain metastases and will discuss how new insights into metastasis biology are driving the development of new therapeutic strategies. Finally, we will describe the latest data from the ongoing clinical trials for patients with melanoma brain metastases.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Disease Management , Melanoma/therapy , Antibodies, Monoclonal/therapeutic use , Brain Neoplasms/immunology , Clinical Trials as Topic/methods , Humans , Immunotherapy/methods , Immunotherapy/trends , Melanoma/immunology , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Protein Kinase Inhibitors/therapeutic use
11.
Cancer Res ; 78(1): 115-128, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29066514

ABSTRACT

The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ecto-nucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNγ production by responder CD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNγ, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induce CD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule on CD8+ T cells, with implications for defining a biomarker of T-cell dysfunction and a target for immunotherapeutic intervention.Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function. Cancer Res; 78(1); 115-28. ©2017 AACR.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Adenosine Triphosphate/metabolism , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Female , Humans , Lymphatic Metastasis/immunology , Lymphatic Metastasis/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/immunology , Melanoma/pathology , Mice, Inbred BALB C , Mice, Knockout , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
12.
Pharmacol Res ; 129: 194-203, 2018 03.
Article in English | MEDLINE | ID: mdl-29203440

ABSTRACT

Cancer immunotherapies are dramatically reshaping the clinical management of oncologic patients. For many of these therapies, the guidelines for administration, monitoring, and management of associated toxicities are still being established. This is especially relevant for adoptively transferred, genetically-modified T cells, which have unique pharmacokinetic properties, due to their ability to replicate and persist long-term, following a single administration. Furthermore, in the case of CAR-T cells, the use of synthetic immune receptors may impact signaling pathways involved in T cell function and survival in unexpected ways. We, herein, comment on the most salient aspects of CAR-T cell design and clinical experience in the treatment of solid tumors. In addition, we discuss different possible scenarios for combinations of CAR-T cells and other treatment modalities, with a special emphasis on kinase inhibitors, elaborating on the strategies to maximize synergism. Finally, we discuss some of the technologies that are available to explore the molecular events governing the success of these therapies. The young fields of synthetic and systems biology are likely to be major players in the advancement of CAR-T cell therapies, providing the tools and the knowledge to engineer patients' T lymphocytes into intelligent cancer-fighting micromachines.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Combined Modality Therapy , Humans
13.
Front Immunol ; 8: 1548, 2017.
Article in English | MEDLINE | ID: mdl-29209313

ABSTRACT

Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice) infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44- cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able to regulate TNF-producing CD4+ T cells since their absence favor the increase of the number of TNF+ CD4+ in T. cruzi-infected mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...