Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 22(12): 100678, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952696

ABSTRACT

Microglia are resident immune cells of the brain that play important roles in mediating inflammatory responses in several neurological diseases via direct and indirect mechanisms. One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular cargo transported by microglia-derived EVs can have functional effects by facilitating intercellular communication. The molecular composition of microglia-derived EVs, and how microglial activation states impact EV composition and EV-mediated effects in neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have unique molecular profiles that are determined by microglial activation state. Using size-exclusion chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free quantitative mass spectrometry or LFQ-MS) and transcriptomic (mRNA and noncoding RNA seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA and microRNA signatures of microglia-derived EVs were also identified. After treating BV2 microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent important resources for the neuroscience and omics communities and provide novel insights into the role of microglia-derived EVs in neuroinflammation.


Subject(s)
Extracellular Vesicles , Microglia , Humans , Microglia/metabolism , Proteomics/methods , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Gene Expression Profiling , Extracellular Vesicles/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Res Sq ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37987015

ABSTRACT

Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability1. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease2-4. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type- specific proteomics and patch-clamp electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. Furthermore, the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression, likely resulting from PV-interneuron variability between the two regions based on physiological and proteomic evaluations. Interestingly, entorhinal hAPP-induced hyperexcitability was quelled by co-expression of human Tau at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.

3.
bioRxiv ; 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37546899

ABSTRACT

Microglia are resident immune cells of the brain that play important roles in mediating inflammatory responses in several neurological diseases via direct and indirect mechanisms. One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular cargo transported by microglia-derived EVs can have functional effects by facilitating intercellular communication. The molecular composition of microglia-derived EVs, and how microglial activation states impacts EV composition and EV-mediated effects in neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have unique molecular profiles that are determined by microglial activation state. Using size-exclusion chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free quantitative mass spectrometry or LFQ-MS) and transcriptomic (mRNA and non-coding RNA seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA and microRNA signatures of microglia-derived EVs were also identified. After treating BV2 microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally-relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent important resources for the neuroscience and glial communities, and provide novel insights into the role of microglia-derived EVs in neuroinflammation.

4.
Proteomics ; 23(13-14): e2200183, 2023 07.
Article in English | MEDLINE | ID: mdl-37060300

ABSTRACT

Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Microglia , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Proteomics , Central Nervous System/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology
5.
Clin Immunol ; 235: 108766, 2022 02.
Article in English | MEDLINE | ID: mdl-34091018

ABSTRACT

Farnesol is a 15­carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Farnesol/pharmacology , Gastrointestinal Microbiome/drug effects , Administration, Oral , Animals , Female , Mice
6.
Front Immunol ; 11: 510113, 2020.
Article in English | MEDLINE | ID: mdl-33193297

ABSTRACT

The intestinal microbiota constitutes a complex ecosystem in constant reciprocal interactions with the immune, neuroendocrine, and neural systems of the host. Recent molecular technological advances allow for the exploration of this living organ and better facilitates our understanding of the biological importance of intestinal microbes in health and disease. Clinical and experimental studies demonstrate that intestinal microbes may be intimately involved in the progression of diseases of the central nervous system (CNS), including those of affective and psychiatric nature. Gut microbes regulate neuroinflammatory processes, play a role in balancing the concentrations of neurotransmitters and could provide beneficial effects against neurodegeneration. In this review, we explore some of these reciprocal interactions between gut microbes and the CNS during experimental disease and suggest that therapeutic approaches impacting the gut-brain axis may represent the next avenue for the treatment of psychiatric disorders.


Subject(s)
Central Nervous System/immunology , Gastrointestinal Microbiome/immunology , Mental Disorders , Neurotransmitter Agents/immunology , Animals , Humans , Mental Disorders/immunology , Mental Disorders/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...