Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38202571

ABSTRACT

Our paper introduces a simulation-based framework designed to interpret differential phase contrast (DPC) magnetic imaging within the transmission electron microscope (TEM). We investigate patterned magnetic membranes, particularly focusing on nano-patterned Co70Fe30 thin-film membranes fabricated via focused ion beam (FIB) milling. Our direct magnetic imaging reveals regular magnetic domain patterns in these carefully prepared systems. Notably, the observed magnetic structure aligns precisely with micromagnetic simulations based on the dimensions of the underlying nanostructures. This agreement emphasizes the usefulness of micromagnetic simulations, not only for the interpretation of DPC data, but also for the prediction of possible microstructures in magnetic sensor systems with nano-patterns.

2.
Entropy (Basel) ; 23(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919678

ABSTRACT

Hysteresis and transformation behavior were studied in epitaxial NiCoMnAl magnetic shape memory alloy thin films with varying number martensitic intercalations (MIs) placed in between. MIs consists of a different NiCoMnAl composition with a martensitic transformation occurring at much higher temperature than the host composition. With increasing number of intercalations, we find a decrease in hysteresis width from 17 K to 10 K. For a large difference in the layers thicknesses this is accompanied by a larger amount of residual austenite. If the thicknesses become comparable, strain coupling between them dominates the transformation process, which manifests in a shift of the hysteresis to higher temperatures, splitting of the hysteresis in sub hysteresis and a decrease in residual austenite to almost 0%. A long-range ordering of martensite and austenite regions in the shape of a 3D checker board pattern is formed at almost equal thicknesses.

3.
Nano Lett ; 18(2): 1264-1268, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29365261

ABSTRACT

Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...