Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(30): 11817-11828, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37437220

ABSTRACT

Water electrolysis is considered as one of the alternative potential approaches for producing renewable energy. Due to the sluggish kinetic nature of oxygen evolution reaction (OER), it encounters a significant overpotential to achieve water electrolysis. Hence, the advancement of cost-effective transition metal-based catalysts toward water splitting has gained global attention in recent years. In this work, the doping of Fe over amorphous NiWO4 increased the OER activity effectively and achieved stable oxygen evolution in the alkaline medium, which show better electrocatalytic activity as compared to crystalline tungstate. As NiWO4 has poor activity toward OER in the alkaline medium, the doping of Fe3+ will tune the electronic structure of Ni in NiWO4 and boost the OER activity. The as-synthesized Fe-doped amorphous NiWO4 exhibits a low overpotential of 230 mV to achieve a current density of 10 mA cm-2 and a lower Tafel slope value of 48 mV dec-1 toward OER in 1.0 M KOH solution. The catalyst also exhibits long-term static stability of 30 h during chronoamperometric study. The doping of Fe improves the electronic conductivity of Ni-3d states in NiWO4 which play a dominant role for better catalytic activity via synergistic interaction between Fe and active Ni sites. In future, these results offer an alternative route for precious metal-free catalysts in alkaline medium and can be explicitly used in various tungstate-based materials to increase the synergism between the doped atom and metal ions in tungstate-based materials for further improvement in the electrocatalytic performance.

2.
Inorg Chem ; 61(51): 21055-21066, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36523209

ABSTRACT

Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.

SELECTION OF CITATIONS
SEARCH DETAIL
...