Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 87(6): 1335-1347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38362795

ABSTRACT

In recent years, the potential of porous soft materials in various device technologies has increased in importance due to applications in fields, such as wearable electronics, medicine, and transient devices. However, understanding the 3-dimensional architecture of porous soft materials at the microscale remains a challenge. Herein, we present a method to structurally analyze soft materials using Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography. Two materials, polymethyl methacrylate (PMMA) membrane and pine wood veneer were chosen as test-cases. FIB-SEM was successfully used to reconstruct the true topography of these materials in 3D. Structural and physical properties were subsequently deduced from the rendered 3D models. The methodology used segmentation, coupled with optimized thresholding, image processing, and reconstruction protocols. The 3D models generated pore size distribution, pore inter-connectivity, tortuosity, thickness, and curvature data. It was shown that FIB-SEM tomography provides both an informative and visual depiction of structure. To evaluate and validate the FIB-SEM reconstructions, porous properties were generated from the physical property analysis techniques, gas adsorption analysis using Brunauer-Emmett-Teller (BET) surface area analysis and mercury intrusion porosimetry (MIP) analysis. In general, the data obtained from the FIB-SEM reconstructions was well-matched with the physical data. RESEARCH HIGHLIGHTS: Porous specimens of both synthetic and biological nature, a poly(methyl methacrylate) membrane and a pine veneer respectively, are reconstructed via FIB-SEM tomography without resin-embedding. Different thresholding and reconstruction methods are explored whereby shadowing artifacts are present with the aid of free open-source software. Reconstruction data is compared to physical data: MIP, gas adsorption isotherms which are analyzed via BET and Barrett-Joyner-Halenda (BJH) analysis to yield a full picture of the materials.

2.
Int J Biol Macromol ; 256(Pt 1): 128195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008143

ABSTRACT

The study involves development of a green biorefinery process for obtaining fucoidan, laminarin, mannitol, alginate and protein from dry and fresh Fucus vesiculosus and Ascophyllum nodosum using hydrochloric acid and a green extraction solvent. After the extraction of fucoidan which was the targeted biomolecule, an extract and by-product (residual biomass) were obtained. The extract was passed through an ultrafiltration membrane, where fucoidan was obtained in the ultrafiltration retentate while ultrafiltration permeate was analysed for laminarin and mannitol. The residual biomass was used for obtaining alginate using ultrasound (20 kHz, 64 % amplitude and 32 min, optimum parameters for alginate extraction based on our previous study). All the samples, showed good results for alginate, laminarin and mannitol, indicating that the by-products can be utilised using this green extraction process. The comparison of both dry and fresh seaweed is relevant from an industry perspective, as fresh seaweed can directly be used for extraction, avoiding drying which adds significantly to the cost of the process. Life cycle impact assessment of the complete seaweed value chain has been carried out to identify the energy demand and key environmental hotspots. This biorefinery process can be used by industry to improve their processes and utilise the by-products generated efficiently.


Subject(s)
Ascophyllum , Fucus , Glucans , Seaweed , Alginates/metabolism , Seaweed/metabolism , Fucus/metabolism , Mannitol , Polysaccharides , Proteins
3.
Membranes (Basel) ; 13(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37103872

ABSTRACT

Polyvinylidene fluoride (PVDF) polymers are known for their diverse range of industrial applications and are considered important raw materials for membrane manufacturing. In view of circularity and resource efficiency, the present work mainly deals with the reusability of waste polymer 'gels' produced during the manufacturing of PVDF membranes. Herein, solidified PVDF gels were first prepared from polymer solutions as model waste gels, which were then subsequently used to prepare membranes via the phase inversion process. The structural analysis of fabricated membranes confirmed the retention of molecular integrity even after reprocessing, whereas the morphological analysis showed a symmetric bi-continuous porous structure. The filtration performance of membranes fabricated from waste gels was studied in a crossflow assembly. The results demonstrate the feasibility of gel-derived membranes as potential microfiltration membranes exhibiting a pure water flux of 478 LMH with a mean pore size of ~0.2 µm. To further evaluate industrial applicability, the performance of the membranes was tested in the clarification of industrial wastewater, and the membranes showed good recyclability with about 52% flux recovery. The performance of gel-derived membranes thus demonstrates the recycling of waste polymer gels for improving the sustainability of membrane fabrication processes.

4.
Membranes (Basel) ; 10(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455647

ABSTRACT

The synergistic mechanism of photocatalytic-assisted dye degradation has been demonstrated using a hybrid ZnO-MoS2-deposited photocatalytic membrane (PCM). Few layers of MoS2 sheets were produced using the facile and efficient surfactant-assisted liquid-phase exfoliation method. In this process, hydrophilic moieties of an anionic surfactant were adsorbed on the surface of MoS2, which aided exfoliation and promoted a stable dispersion due to the higher negative zeta potential of the exfoliated MoS2 sheets. Further, the decoration of ZnO on the exfoliated MoS2 sheets offered a bandgap energy reduction to about 2.77 eV, thus achieving an 87.12% degradation of methylene blue (MB) dye within 15 min of near UV-A irradiation (365 nm), as compared with pristine ZnO achieving only 56.89%. The photocatalysis-enhanced membrane filtration studies on the ZnO-MoS2 PCM showed a complete removal of MB dye (~99.95%). The UV-assisted dye degradation on the ZnO-MoS2 PCM offered a reduced membrane resistance, with the permeate flux gradually improving with the increase in the UV-irradiation time. The regeneration of the active ZnO-MoS2 layer also proved to be quite efficient with no compromise in the dye removal efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...