Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 303(Pt 2): 135126, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35644239

ABSTRACT

Remote communities in developing countries are facing ever-increasing water scarcities, due to cumulative demand induced by the climate change and global warming impacts. For the socio-economic and health well-being of the local communities, sufficient, efficient, and affordable water supply is fundamental from local-based adsorbents. Matamba Fruit shell was obtained and pyrolyzed to obtain well-transformed biochar, which exhibited enough capacity to remove Iodine from aqueous solution. The maximum capacity of adsorption of the Matamba Fruit shell was 2.122 mmol L-1 and 2.12 mmol L-1 from conventional and Bayesian statistics correspondingly. The difference was insignificant. The surface morphology was evaluated by the Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FESEM-EDX) which revealed porous structures with irregular openings enough to purge wastewater pollutants. The material surface area was 267.0 m2 g-1, as estimated by both approaches, making the Matamba Fruit shell an emerging potential candidate for environmental pollution control and use in bioremediation practices. The Fourier-transform infrared spectroscopy (FTIR) revealed that surface functional groups of Matamba Fruit shell biochar have enough peak variations in intensity and position due to vibration variations of the surface. The Fruit shell has different functional groups including the hydroxyl (-OH) and the carbonyl groups (CO), CC stretches of aromatic rings, and the carboxylate (C-O-O-) groups. The biochar understudy unveiled its capability for wastewater-treatment reuse in local and urban communities of developing countries to safeguard their health and access to water-supply as the climate change reverberations are affecting the developing countries more pronounced than before.


Subject(s)
Iodine , Water Pollutants, Chemical , Adsorption , Bayes Theorem , Charcoal/chemistry , Climate Change , Fruit , Kinetics , Spectroscopy, Fourier Transform Infrared , Wastewater , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL