Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 36915-36927, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36550247

ABSTRACT

In this study, the interaction between nanoparticles (0, 50, 100, and 150 mg L-1) and light intensity (100, 200, and 400 µmol·m-2·s-1) was evaluated for effectiveness in improving stevia shoot induction by measuring morphological traits, nutrient absorption, total carbohydrates, steviol glycosides (SVglys), and DNA damage in two DNA sequence regions (promoter and sequence of the UGT76G1 gene). MWCNTs at a concentration of 50 mg L-1 in interaction with the light intensity of 200 µmol·m-2·s-1 improved the morphological traits and absorption of nutrients such as nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), iron (Fe), and Manganese (Mn), compared to other treatments. Also, under this interaction, the accumulation of total carbohydrates and SVglys was elevated. Moreover, DNA damage in both regions of the DNA sequence under light intensity at low concentrations of MWCNTs (0 and 50 mg L-1) did not show a significant change but increased with increasing MWCNT concentration at high light intensities (200 and 400 µmol·m-2·s-1). These results demonstrate that the advantages and phytotoxicity of MWCNTs in the in vitro culture of stevia are dose-dependent and are affected by light intensity. Based on this, the interaction of 50 mg L-1 of MWCNTs with the light intensity of 200 µmol·m-2·s-1 is recommended to improve stevia micropropagation and subsequent growth and metabolism.


Subject(s)
Nanotubes, Carbon , Stevia , Stevia/genetics , Stevia/metabolism , Secondary Metabolism , Glucosides , DNA Damage , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...