Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38793454

ABSTRACT

The use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement of carbon fiber-reinforced polymer (CFRP) laminates throughout the thickness could be considered as an approach to improve the joint strength. Using thin plies locally between the conventional CFRP layers in a laminate can enhance the strength, as the sudden change in stiffness means that the load transfer is not monotonous. Consequently, the following study examined the effect of altering thin plies gradually throughout the thickness on the behaviour of the CFRP laminates when subjected to transverse tensile loading. To achieve this goal, the CFRP laminates were gradually modified by using different commercially accessible prepreg thin plies, leading to an improved overall structural performance by reducing stress concentrations. Besides conducting an experimental study, a numerical assessment was also carried out utilizing Abaqus software with a Representative Volume Element (RVE) at the micro scale. The comparison of reference configurations, which involved various thin plies with different thicknesses and traditional CFRP laminates, with the suggested gradual configuration, demonstrated a notable enhancement in both strength and material cost. Furthermore, the proposed RVE model showed promising capability in accurately forecasting the strength of fabricated laminates.

2.
Materials (Basel) ; 16(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297137

ABSTRACT

It has been demonstrated that a possible solution to reducing delamination in a unidirectional composite laminate lies in the replacement of conventional carbon-fibre-reinforced polymer layers with optimized thin-ply layers, thus creating hybrid laminates. This leads to an increase in the transverse tensile strength of the hybrid composite laminate. This study investigates the performance of a hybrid composite laminate reinforced by thin plies used as adherends in bonded single lap joints. Two different composites with the commercial references Texipreg HS 160 T700 and NTPT-TP415 were used as the conventional composite and thin-ply material, respectively. Three configurations were considered in this study: two reference single lap joints with a conventional composite or thin ply used as the adherends and a hybrid single lap. The joints were quasi-statically loaded and recorded with a high-speed camera, allowing for the determination of damage initiation sites. Numerical models of the joints were also created, allowing for a better understanding of the underlying failure mechanisms and the identification of the damage initiation sites. The results show a significant increase in tensile strength for the hybrid joints compared to the conventional ones as a result of changes in the damage initiation sites and the level of delamination present in the joint.

3.
Materials (Basel) ; 16(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36676305

ABSTRACT

The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding plays a key role. Unlike conventional joining methods, adhesive bonding does not add weight or require the drilling of holes, both of which are major sources of stress concentration. The performance of a composite joint is dependent on multiple factors and can be improved by modifying the adhesive layer or the composite layup of the adherend. Moreover, joint geometry, surface preparation, and the manufacturing methods used for production are also important factors. The present work reviews recent developments on the design and manufacture of adhesively bonded joints with composite substrates, with particular interest in adherend modification techniques. The effects of stacking sequence, use of thin-plies, composite metal laminates and its specific surface preparations, and the use of toughened surface layers in the composite adherends are described for adhesively bonded CFRP structures.

4.
Materials (Basel) ; 15(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500037

ABSTRACT

The presence of residual stresses in composite materials can significantly affect material performance, especially when integrated in bonded joints. These stresses, often generated during the cure process, can cause cracking and distortion of the material, and are caused by differences in the coefficients of thermal expansion or cure shrinkage. In the current research, multimaterial adherends combining carbon-fibre-reinforced polymer (CFRP) and aluminium in a single-lap joint (SLJ) configuration are analysed, allowing us to understand the effect of the thermal residual stresses, developed during the curing process, in the overall performance of the joints. A numerical model resorting to a finite element analysis (FEA) is developed to assess and predict the behaviour of the joints. The use of FML (fibre metal laminates) was found to significantly improve the strength of the joints, as well as the failure mode. The proposed geometry performed similarly to the comparable FML geometry, in addition to a decrease in the joint weight.

SELECTION OF CITATIONS
SEARCH DETAIL
...