Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 28(5): 519-529, 2023 08.
Article in English | MEDLINE | ID: mdl-37452868

ABSTRACT

Acylpyrazolone-based Schiff base ligands (HLn) and their corresponding Pt(II) complexes with the general formula [Pt(Ln)(Cl)] (n = 1-3) were synthesized and characterized by different spectroscopic techniques including 1H-NMR, 195Pt-NMR, LC-Mass, FT-IR, and UV-Vis spectroscopy, as well as elemental analysis. The crystal structure of one of the Schiff base ligands was also obtained. Based on the ADMET comparative results and the bioavailability radar charts, the complexes are completely drug-like. The Schiff base complexes with a structural difference of one methyl group in ligand were used as anticancer agents against human breast cancer cell lines SKBR3 and MDA-MB-231. The IC50 values after treatment by [Pt(L1)Cl] and [Pt(L2)Cl] were obtained more than cisplatin and less than carboplatin on cancer cells MDA-MB-231 and SKBR3, while the IC50 value of [Pt(L3)Cl] was more than both other complexes and clinical Pt drugs. Molecular docking data showed that the groove binding is the main interaction with DNA double strands with a minor contribution from electrostatic interactions. To investigate the structure-activity relationship, DFT computational was done. All quantum chemical parameters display the drug approaching biomacromolecule and more biological activity of [Pt(L1)Cl] > [Pt(L2)Cl] > [Pt(L3)Cl]. So, three Schiff base platinum complexes can be suitable candidates as anticancer drugs. Schiff-base ligands (HLn) and their Pt(II) complexes ([Pt(Ln)(Cl)], n=1-3) were obtained. To investigate their biological property and main interactions with DNA, ADMET, and cytotoxicity against MDA-MB-231 and SKBR3, DFT, and Molecular docking were done.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Coordination Complexes , Humans , Female , Platinum/chemistry , Breast Neoplasms/drug therapy , Molecular Docking Simulation , X-Rays , Schiff Bases/chemistry , Ligands , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
2.
J Biol Inorg Chem ; 26(2-3): 283-298, 2021 05.
Article in English | MEDLINE | ID: mdl-33616752

ABSTRACT

In this study, two new anticancer platinum complexes formulated as [Pt(bpy)(L)]NO3 were synthesized using the iso and tert-pentylglycine ligands, two structural isomer ligands, to investigate side branches effect on the complex-DNA interaction. According to the comparative results of the ADMET assessment, these compounds can be considered as the drug-like molecules and oral medication. Mechanism of tumor inhibition and DNA binding parameters indicated the higher ability of the tert-isomer and also, both complexes acted through the disruption of the base pairs and stacks of helicity by the endothermic process. Fluorescence spectroscopy showed that the quenching mechanism is static for both drugs with large binding constant and high binding affinity towards the DNA. Also, the amount of binding constant of the tert -isomer was about 14 times of another structural isomerous complex. CD spectra indicated the conversion of the B-DNA into A-DNA form via electrostatic interaction for positively charged complexes. The cytotoxic data showed that both compounds have antiproliferative effects against the MCF-7 cell line and the inhibitory effect of the iso-derivative was better than the tert-one. Docking studies showed that the desolvation energy and hydrogen bond are more effective between the other interactions. The torsional free energy for both complexes mainly provided the groove binding along with partially electrostatic and intercalate binding. According to the density-functional theory data and because of positive electron density on the surface of complexes and facilitating of the metal drug to DNA phosphate groups approaching, both complexes may be good candidates for the anticancer drugs. Two new anticancer Pt(II) complexes were synthesized with glycine derivatives. In vitro cytotoxicity effects were tested against the human breast cancer cell line of MCF-7. Moreover, the modes of DNA binding with synthesized compounds were investigated using ADME prediction, DFT, molecular docking and spectroscopic methods.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Density Functional Theory , Glycine/chemistry , Molecular Docking Simulation , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/metabolism , DNA/chemistry , DNA/metabolism , Humans , MCF-7 Cells , Nucleic Acid Conformation , Organoplatinum Compounds/metabolism
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119415, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33497975

ABSTRACT

1,3-Dimethylpentylamine (Geranamine) with a similar structure to amphetamine has been used as an athletic performance promoter (doping agent) and also as an indirect sympathomimetic drug to synthesize of 1,3-dimethyl pentyl glycine (13DMPG). Thereafter, two new anticancer platinum complexes as [Pt(DACH)(13DMPG)]NO3 and [Pt(bpy)(13DMPG)]NO3 were synthesized using this ligand and then characterized by spectroscopic methods. ADMET comparative results indicated that they are entirely in the pink area of the Bioavailability Radar, so they can be considered as drug-like and oral medications. Mechanism of tumor inhibition and DNA binding parameters were investigated and the results indicated the higher ability of [Pt(bpy)(13DMPG)]NO3 with the endothermic process for both systems compared with [Pt(DACH)(13DMPG)]NO3. Fluorescence study showed that the quenching mechanism is static for both drugs with large binding constant and high binding (Kb ≈ 8000 M-1 and kq ≈ 5.3 × 1011 M-1 s-1) affinity towards DNA. CD spectra showed the increased intensity of the positive band and the decreased negative band, meaning B-DNA converting to A-DNA form via electrostatic interaction for positively charged complexes. The cytotoxic effect analyzed by MTT assay showed that both compounds have effective antiproliferative on MCF-7 cell line. In addition, the inhibition effect of [Pt(DACH)(13DMPG)]NO3 (IC50 = 17 µM) was shown to be better than [Pt(bpy)(13DMPG)]NO3 (IC50 = 45 µM). According to DFT results, anticancer properties of [Pt(bpy)(13DMPG)]NO3 mainly is more than cisplatin and [Pt(DACH)(13DMPG)]NO3. Docking studies showed that the desolvation energy and hydrogen bond are more effective compared to the other interactions. The torsional free energy, about +1.19 kcal/mol, for both complexes mainly provides groove binding with partially electrostatic and intercalate bindings.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Doping in Sports , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Glycine , Humans , Ligands , Platinum
SELECTION OF CITATIONS
SEARCH DETAIL
...