Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 260: 110042, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31941624

ABSTRACT

Generally, Fly ashes (FAs) in Municipal Solid Waste Incinerator (MSWI) are classified as hazardous waste and commonly managed in a mixed way even though distinct FA in incineration flows have different characteristics. Thus, it can cause improper management of fly ashes and an increase in cost as well as the volume of residual ashes sent to the hazardous landfill. In this study, Bottom ash (BA), Secondary furnace ash (SFA), Superheater ash (SHA), Boiler chamber ash (BCA), Economizer ash (EA), and Baghouse Filter Ash (BHFA) have been sampled separately from different locations at an MSWI plant. An integrated approach involving physical, chemical, mineralogy, and leaching behavior was used to characterize the residual ashes. Results point out that the average diameter of ash particles varies from 4.87 µm for BHFA to 6825 µm for BA, with three distinct zones. The Blaine fineness value increases when the median size of ash particles decreases. All values of Loss on Ignition (LOI) at 550 °C are less than 3%, indicating a suitable burning. The main mineralogical crystalline phases in ashes were KCl, NaCl, Mg.6Al1.2Si1.8O6, CaCO3, CaSO4, CaSO3, and SiO2. Among the considered heavy metals, leaching tests identified high levels of hazardous waste for Pb, Cd, Cu, and Zn in BHFA as well as for Pb and Zn in SHA. BA, SFA, BCA, and EA are categorized as non-hazardous according to the TCLP (USEPA-1311). In terms of EN 12457-2 test, BA and SFA are inert waste; but SHA, BCA, and EA are classified as hazardous waste due to a significant level of Cl. The results show that the characteristics of ash in the separate location of the MSWI process is essential to have an economical and proper solution for ash management.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Incineration , Silicon Dioxide , Solid Waste
2.
Environ Sci Pollut Res Int ; 26(20): 20829-20838, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31111389

ABSTRACT

Stabilization and solidification (s/s) of heavy metals by cementitious materials are one of the effective methods in hazardous waste management. In cement alkaline environment, Cr(VI) compounds appear in the form of chromate anion (CrO4-2), which is highly soluble; it makes the implication of the s/s method challenging. Therefore, it is important to study the amount of chromium leaching from cementitious materials. The effects of Cr(VI) concentration and water-to-cement (w/c) ratio on the level of leaching of chromium from cement mortar (CM) were investigated in this study. Results indicated w/c not significantly affect the leaching of chromium in the age of 28-day but in the 90-day-old samples indicated a reduction in leaching of chromium from mortar with increasing w/c. Results from toxicity characteristic leaching procedure (TCLP) tests indicated that the efficiency of Cr(VI) stabilization was reduced with greater chromium content but was enhanced with increased w/c. In detail, results showed that only about 0.21% and 0.26% cement weight in TCLP and tank test of Cr(VI) was stabilized in CM, respectively. The results of X-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) tests indicated that increasing the Cr(VI) content leads to changes in the formation of the cement main phases and microstructure of CM.


Subject(s)
Chromium/chemistry , Construction Materials , Chromium/analysis , Environmental Pollutants/chemistry , Hazardous Waste , Water/chemistry , X-Ray Diffraction
3.
J Basic Microbiol ; 55(1): 105-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25590872

ABSTRACT

The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology.


Subject(s)
Bacillus/metabolism , Calcium Carbonate/chemistry , Chemical Precipitation , Soil Microbiology , Bacillus/genetics , Crystallization , Culture Media , Microscopy, Electron, Scanning , RNA, Ribosomal, 16S , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...