Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 881595, 2022.
Article in English | MEDLINE | ID: mdl-35814711

ABSTRACT

Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes. Our earlier findings demonstrated the antiviral activity of zinc salts against HEV infection. Zinc oxide (ZnO) and its nanostructures have attracted marked interest due to their unique characteristics. Here we synthesized ZnO nanoparticles [ZnO(NP)] and tetrapod-shaped ZnO nanoparticles [ZnO(TP)] and evaluated their antiviral activity. Both ZnO(NP) and ZnO(TP) displayed potent antiviral activity against hepatitis E and hepatitis C viruses, with the latter being more effective. Measurement of cell viability and intracellular reactive oxygen species levels revealed that both ZnO(NP) and ZnO(TP) are noncytotoxic to the cells even at significantly higher doses, compared to a conventional zinc salt (ZnSO4). Our study paves the way for evaluation of the potential therapeutic benefit of ZnO(TP) against HEV and HCV.

2.
ACS Appl Mater Interfaces ; 7(32): 17713-24, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26225901

ABSTRACT

The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

3.
Small ; 8(21): 3307-14, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22826095

ABSTRACT

A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high-index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c-axis-oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO-ZnO core-shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high-index polar surfaces. Ozone sensing response is compared for all three types of fabricated nanowire morphologies, namely nanowires with smooth surfaces, ZnO-ZnO core-shell nanowires, and zigzagged ZnO nanowires to determine the role of crystallographic surface planes on gas response. While the smooth and core-shell nanowires are largely non-responsive to varying O(3) concentrations in the experiments, zigzagged nanowires show a significantly higher sensitivity (ppb level) owing to inherent defect-rich high-index polar surfaces.

4.
Small ; 6(16): 1705-22, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20712030

ABSTRACT

Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface-to-volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single-molecule detection with superior sensing performance. In this work, progress made towards the use of nanowires for achieving better sensing performance is critically reviewed. In particular, various nanowires types (metallic, semiconducting, and insulating) and their employment either as a sensor material or as a template material are discussed. Major obstacles and future steps towards the ultimate nanosensors based on nanowires are addressed.


Subject(s)
Biosensing Techniques , Nanowires/chemistry , Biosensing Techniques/instrumentation , Electrochemistry , Nanotechnology/methods , Semiconductors , Silicon/chemistry , Surface Plasmon Resonance
6.
Nanotechnology ; 19(24): 245502, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-21825812

ABSTRACT

The vapor-liquid-solid (VLS) growth procedure has been extended for the selective growth of silica nanowires on SiO(2) layer by using Au as a catalyst. The nanowires were grown in an open tube furnace at 1100 °C for 60 min using Ar as a carrier gas. The average diameter of these bottom-up nucleated wires was found to be 200 nm. Transmission electron microscopy analysis indicates the amorphous nature of these nanoscale wires and suggests an Si-silica heterostructure. The localized silica nanowires have been used as an immunoassay template in the detection of interleukin-10 which is a lung cancer biomarker. Such a nanostructured platform offered a tenfold enhancement in the optical response, aiding the recognition of IL-10 in comparison to a bare silica substrate. The role of nanowires in the immunoassay was verified through the quenching behavior in the photoluminescence (PL) spectra. Two orders of reduction in PL intensity have been observed after completion of the immunoassay with significant quenching after executing every step of the protocol. The potential of this site-specific growth of silica nanowires on SiO(2) as a multi-modal biosensing platform has been discussed.

7.
J Phys Chem B ; 110(37): 18236-42, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970441

ABSTRACT

A simple method of vapor deposition for the shape selective synthesis of ZnO structures, namely, multipods, submicron wires, and spheres, has been successfully demonstrated. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) is proposed. Our studies suggest that the growth of a multipod structure is governed by the screw dislocation propagation while the vapor-liquid-solid (VLS) mechanism is responsible for the formation of submicron wires and spheres. Moreover, the flow rate of the carrier gas plays a crucial role in governing the morphology. Further, these structures exhibit an enhanced field emission behavior. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of electron emission from semiconductors, is explained by considering the contributions from both the conduction and the valence bands of ZnO.

8.
J Phys Chem B ; 110(9): 3995-4001, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509688

ABSTRACT

Shape selective synthesis of ZnO micropencils and microhexagonal cones has been demonstrated using a controlled method of modified vapor deposition. A plausible growth mechanism based on the results of scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, and differential thermal analysis is proposed. Our results suggest that growth of micropencil takes place as per the vapor-liquid-solid progression while the microhexagonal cones grow in two steps following a vapor-solid/vapor-liquid-solid mechanism. Moreover, the geometry, the location of substrate and temperature are found to have key roles in governing the morphology. XPS studies clearly demonstrate the presence of Si species as SiO and SiO2, which act as catalysts enabling nucleating sites for ZnO microstructural growth.

9.
J Phys Chem B ; 109(25): 12297-303, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-16852517

ABSTRACT

Several dissimilar types of tin oxide microstructures including bipyramids, cubes, and wires synthesized effectively by means of a simple approach were investigated using X-ray diffraction (XRD), thermogravimetry/differential thermometric analysis (TG-DTA), and X-ray photoelectron spectroscopy (XPS). A possible growth mechanism is proposed using the results of these studies. The texture coefficient values of all the structures, indexed to a tetragonal lattice, exhibit amazing variation in the preferred orientation with respect to their shapes. Although XPS data indicate that wires and cubes have a strong SnO(2) type signal, bipyramids interestingly exhibit both SnO and SnO(2) signals and a correlation of the binding energy helps in understanding the growth kinetics of such submicron structures. The results suggest that the bipyramids are formed because of the vapor-solid process (VS) while wires and cubes are formed by the vapor-liquid-solid (VLS) progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...