Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Function (Oxf) ; 4(1): zqac058, 2023.
Article in English | MEDLINE | ID: mdl-36540890

ABSTRACT

The N-type calcium channel, CaV2.2 is key to neurotransmission from the primary afferent terminals of dorsal root ganglion (DRG) neurons to their postsynaptic targets in the spinal cord. In this study, we have utilized CaV2.2_HA knock-in mice, because the exofacial epitope tag in CaV2.2_HA enables accurate detection and localization of endogenous CaV2.2. CaV2.2_HA knock-in mice were used as a source of DRGs to exclusively study the presynaptic expression of N-type calcium channels in co-cultures between DRG neurons and wild-type spinal cord neurons. CaV2.2_HA is strongly expressed on the cell surface, particularly in TRPV1-positive small and medium DRG neurons. Super-resolution images of the presynaptic terminals revealed an increase in CaV2.2_HA expression and increased association with the postsynaptic marker Homer over time in vitro. Brief application of the TRPV1 agonist, capsaicin, resulted in a significant down-regulation of cell surface CaV2.2_HA expression in DRG neuron somata. At their presynaptic terminals, capsaicin caused a reduction in CaV2.2_HA proximity to and co-localization with the active zone marker RIM 1/2, as well as a lower contribution of N-type channels to single action potential-mediated Ca2+ influx. The mechanism of this down-regulation of CaV2.2_HA involves a Rab11a-dependent trafficking process, since dominant-negative Rab11a (S25N) occludes the effect of capsaicin on presynaptic CaV2.2_HA expression, and also prevents the effect of capsaicin on action potential-induced Ca2+ influx. Taken together, these data suggest that capsaicin causes a decrease in cell surface CaV2.2_HA expression in DRG terminals via a Rab11a-dependent endosomal trafficking pathway.


Subject(s)
Capsaicin , Ganglia, Spinal , Mice , Animals , Capsaicin/pharmacology , Coculture Techniques , Spinal Cord/metabolism , Calcium Channels, N-Type/metabolism , Endocytosis
2.
J Physiol ; 600(24): 5333-5351, 2022 12.
Article in English | MEDLINE | ID: mdl-36377048

ABSTRACT

In the mammalian brain, presynaptic CaV 2 channels play a pivotal role in synaptic transmission by mediating fast neurotransmitter exocytosis via influx of Ca2+ into the active zone of presynaptic terminals. However, the distribution and modulation of CaV 2.2 channels at plastic hippocampal synapses remains to be elucidated. Here, we assess CaV 2.2 channels during homeostatic synaptic plasticity, a compensatory form of homeostatic control preventing excessive or insufficient neuronal activity during which extensive active zone remodelling has been described. We show that chronic silencing of neuronal activity in mature hippocampal cultures resulted in elevated presynaptic Ca2+ transients, mediated by increased levels of CaV 2.2 channels at the presynaptic site. This work focused further on the role of α2 δ-1 subunits, important regulators of synaptic transmission and CaV 2.2 channel abundance at the presynaptic membrane. We found that α2 δ-1 overexpression reduces the contribution of CaV 2.2 channels to total Ca2+ flux without altering the amplitude of the Ca2+ transients. Levels of endogenous α2 δ-1 decreased during homeostatic synaptic plasticity, whereas the overexpression of α2 δ-1 prevented homeostatic synaptic plasticity in hippocampal neurons. Together, this study reveals a key role for CaV 2.2 channels and novel roles for α2 δ-1 during synaptic plastic adaptation. KEY POINTS: The roles of CaV 2.2 channels and α2 δ-1 in homeostatic synaptic plasticity in hippocampal neurons in culture were examined. Chronic silencing of neuronal activity resulted in elevated presynaptic Ca2+ transients, mediated by increased levels of CaV 2.2 channels at presynaptic sites. The level of endogenous α2 δ-1 decreased during homeostatic synaptic plasticity, whereas overexpression of α2 δ-1 prevented homeostatic synaptic plasticity in hippocampal neurons. Together, this study reveals a key role for CaV 2.2 channels and novel roles for α2 δ-1 during synaptic plastic adaptation.


Subject(s)
Neuronal Plasticity , Presynaptic Terminals , Animals , Presynaptic Terminals/physiology , Neurons/physiology , Hippocampus , Synaptic Transmission/physiology , Plastics , Mammals
3.
Neurobiol Dis ; 138: 104779, 2020 05.
Article in English | MEDLINE | ID: mdl-31991246

ABSTRACT

Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism, results from the loss of fragile X mental retardation protein (FMRP). We have recently identified a direct interaction of FMRP with voltage-gated Ca2+ channels that modulates neurotransmitter release. In the present study we used a combination of optophysiological tools to investigate the impact of FMRP on the targeting of voltage-gated Ca2+ channels to the active zones in neuronal presynaptic terminals. We monitored Ca2+ transients at synaptic boutons of dorsal root ganglion (DRG) neurons using the genetically-encoded Ca2+ indicator GCaMP6f tagged to synaptophysin. We show that knock-down of FMRP induces an increase of the amplitude of the Ca2+ transient in functionally-releasing presynaptic terminals, and that this effect is due to an increase of N-type Ca2+ channel contribution to the total Ca2+ transient. Dynamic regulation of CaV2.2 channel trafficking is key to the function of these channels in neurons. Using a CaV2.2 construct with an α-bungarotoxin binding site tag, we further investigate the impact of FMRP on the trafficking of CaV2.2 channels. We show that forward trafficking of CaV2.2 channels from the endoplasmic reticulum to the plasma membrane is reduced when co-expressed with FMRP. Altogether our data reveal a critical role of FMRP on localization of CaV channels to the presynaptic terminals and how its defect in a context of FXS can profoundly affect synaptic transmission.


Subject(s)
Calcium Channels/metabolism , Fragile X Mental Retardation Protein/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Animals , Calcium/metabolism , Calcium Channels, N-Type/metabolism , Fragile X Syndrome/physiopathology , Synaptic Transmission/physiology
4.
Proc Natl Acad Sci U S A ; 115(51): E12043-E12052, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30487217

ABSTRACT

The auxiliary α2δ calcium channel subunits play key roles in voltage-gated calcium channel function. Independent of this, α2δ-1 has also been suggested to be important for synaptogenesis. Using an epitope-tagged knockin mouse strategy, we examined the effect of α2δ-1 on CaV2.2 localization in the pain pathway in vivo, where CaV2.2 is important for nociceptive transmission and α2δ-1 plays a critical role in neuropathic pain. We find CaV2.2 is preferentially expressed on the plasma membrane of calcitonin gene-related peptide-positive small nociceptors. This is paralleled by strong presynaptic expression of CaV2.2 in the superficial spinal cord dorsal horn. EM-immunogold localization shows CaV2.2 predominantly in active zones of glomerular primary afferent terminals. Genetic ablation of α2δ-1 abolishes CaV2.2 cell-surface expression in dorsal root ganglion neurons and dramatically reduces dorsal horn expression. There was no effect of α2δ-1 knockout on other dorsal horn pre- and postsynaptic markers, indicating the primary afferent pathways are not otherwise affected by α2δ-1 ablation.


Subject(s)
Ablation Techniques/methods , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/metabolism , Cell Membrane/metabolism , Pain/metabolism , Protein Transport/physiology , Animals , Ganglia, Spinal/metabolism , Mice , Mice, Knockout , Neuralgia/metabolism , Neurons/metabolism , Pain/nursing , Posterior Horn Cells/cytology , Posterior Horn Cells/metabolism , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...