Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080825

ABSTRACT

Wearable and implantable medical devices (IMDs) have come a long way in the past few decades and have contributed to the development of many personalized health monitoring and therapeutic applications. Sustaining these devices with reliable and long-term power supply is still an ongoing challenge. This review discusses the challenges and milestones in energizing wearable and IMDs using the RF energy harvesting (RFEH) technique. The review highlights the main integrating frontend blocks such as the wearable and implantable antenna design, matching network, and rectifier topologies. The advantages and bottlenecks of adopting RFEH technology in wearable and IMDs are reviewed, along with the system elements and characteristics that enable these devices to operate in an optimized manner. The applications of RFEH in wearable and IMDs medical devices are elaborated in the final section of this review. This article summarizes the recent developments in RFEH, highlights the gaps, and explores future research opportunities.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Physical Phenomena
2.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746197

ABSTRACT

This paper proposes a 2.4-GHz fully-integrated single-frequency multi-channel RF energy harvesting (RFEH) system with increased harvested power density. The RFEH can produce an output power of ~423-µW in harvesting ambient RF energy. The front-end consists of an on-chip impedance matching network with a stacked rectifier concurrently matched to a 50 Ω input source. The circuit mitigates the "dead-zone" by enhancing the pumping efficiency, achieved through the increase of Vgs drivability of the proposed internal gate boosting 6-stage low-input voltage charge pump and the 5-stage shared-auxiliary-biasing ring-voltage-controlled-oscillator (VCO) integrated to improve the start-up. The RFEH system, simulated in 180-nm complementary metal-oxide-semiconductor (CMOS), occupies an active area of 1.02 mm2. Post-layout simulations show a peak power conversion efficiency(PCE) of 21.15%, driving a 3.3-kΩ load at an input power of 0 dBm and sensitivity of -14.1 dBm corresponding to an output voltage, Vout,RFEH of 1.25 V.


Subject(s)
Semiconductors , Electric Impedance , Equipment Design
3.
PLoS One ; 11(7): e0158954, 2016.
Article in English | MEDLINE | ID: mdl-27391136

ABSTRACT

Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.


Subject(s)
Electronics, Medical , Models, Theoretical , Video Recording
4.
ScientificWorldJournal ; 2014: 601729, 2014.
Article in English | MEDLINE | ID: mdl-25202733

ABSTRACT

Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included for making a more accurate ray tracing technique. Here, the rough surface scattering is represented by microfacets, for which it becomes possible to compute the scattering field in all possible directions. New optimization techniques, like dual quadrant skipping (DQS) and closest object finder (COF), are implemented for fast characterization of wireless communications and making the ray tracing technique more efficient. In conjunction with the ray tracing technique, probability based coverage optimization algorithm is accumulated with the ray tracing technique to make a compact solution for indoor propagation prediction. The proposed technique decreases the ray tracing time by omitting the unnecessary objects for ray tracing using the DQS technique and by decreasing the ray-object intersection time using the COF technique. On the other hand, the coverage optimization algorithm is based on probability theory, which finds out the minimum number of transmitters and their corresponding positions in order to achieve optimal indoor wireless coverage. Both of the space and time complexities of the proposed algorithm surpass the existing algorithms. For the verification of the proposed ray tracing technique and coverage algorithm, detailed simulation results for different scattering factors, different antenna types, and different operating frequencies are presented. Furthermore, the proposed technique is verified by the experimental results.


Subject(s)
Algorithms , Models, Theoretical
5.
ScientificWorldJournal ; 2014: 163414, 2014.
Article in English | MEDLINE | ID: mdl-25197694

ABSTRACT

This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 µm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2).


Subject(s)
Computer Storage Devices , Equipment Design/methods , Semiconductors , Signal Processing, Computer-Assisted/instrumentation , Wireless Technology/instrumentation
6.
ScientificWorldJournal ; 2014: 683971, 2014.
Article in English | MEDLINE | ID: mdl-25133252

ABSTRACT

A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.


Subject(s)
Electronics/instrumentation , Radio/instrumentation , Electronics/methods
7.
ScientificWorldJournal ; 2014: 923893, 2014.
Article in English | MEDLINE | ID: mdl-25133266

ABSTRACT

This work presents the design of a low power upconversion mixer adapted in medical remote sensing such as wireless endoscopy application. The proposed upconversion mixer operates in ISM band of 433 MHz. With the carrier power of -5 dBm, the proposed mixer has an output inferred 1 dB compression point of -0.5 dBm with a corresponding output third-order intercept point (OIP3) of 7.1 dBm. The design of the upconversion mixer is realized on CMOS 0.13 µm platform, with a current consumption of 594 µA at supply voltage headroom of 1.2 V.


Subject(s)
Diagnostic Equipment , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods
8.
PLoS One ; 9(7): e101862, 2014.
Article in English | MEDLINE | ID: mdl-25033049

ABSTRACT

For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.


Subject(s)
Cell Phone/instrumentation , Electric Power Supplies , Signal Processing, Computer-Assisted , Amplifiers, Electronic , Communication , Equipment Design , Equipment Failure Analysis , Microwaves , Pancreatitis-Associated Proteins
9.
ScientificWorldJournal ; 2014: 671619, 2014.
Article in English | MEDLINE | ID: mdl-25019096

ABSTRACT

Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.


Subject(s)
Thermodynamics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...