Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Adv Exp Med Biol ; 1370: 311-321, 2022.
Article in English | MEDLINE | ID: mdl-35882806

ABSTRACT

In many experimental studies, pharmacological levels of taurine have been used to study physiological functions of taurine. However, this approach is unlikely to be fruitful, as pharmacological administration increases extracellular taurine, while physiological actions of taurine require alterations in intracellular taurine. Recognizing that different mechanisms might underlie the pharmacological and physiological actions of taurine, cardiac properties before and after exposure to various extracellular or intracellular concentrations of taurine were examined. To assess the effect of physiological taurine, myocardial contractility and metabolic status were compared in hearts containing different intracellular taurine concentrations. By contrast, the pharmacological actions of taurine were assessed in normal hearts perfused with buffer containing or lacking 10 mM taurine. Both pharmacological and physiological taurine increased contractile function and oxygen consumption. Yet, the pharmacological actions of taurine on contractile function were dependent on the L-type Ca2+ channel, while the sarcoplasmic reticular Ca2+ ATPase contributed to the physiological actions of taurine. ATP generation from available substrates, glucose, fatty acids, and acetate was increased for both the physiological and pharmacological actions of taurine. However, taurine supplementation enhanced ATP generation by elevating respiratory chain complex I activity and by stimulating metabolic flux through reductions in the NADH/NAD+ ratio, while the pharmacological actions of taurine can be traced to elevations in [Ca2+]i and the observed positive inotropic effect. Thus, the mechanisms underlying the pharmacological actions of taurine on contractile function and energy metabolism are entirely different than those contributing to the physiological actions of taurine.


Subject(s)
Heart , Taurine , Adenosine Triphosphate/metabolism , Energy Metabolism , Heart/physiology , Myocardium/metabolism , Taurine/metabolism , Taurine/pharmacology
2.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L691-L700, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30758991

ABSTRACT

The second messenger, cAMP, is highly compartmentalized to facilitate signaling specificity. Extracellular vesicles (EVs) are submicron, intact vesicles released from many cell types that can act as biomarkers or be involved in cell-to-cell communication. Although it is well recognized that EVs encapsulate functional proteins and RNAs/miRNAs, currently it is unclear whether cyclic nucleotides are encapsulated within EVs to provide an additional second messenger compartment. Using ultracentrifugation, EVs were isolated from the culture medium of unstimulated systemic and pulmonary endothelial cells. EVs were also isolated from pulmonary microvascular endothelial cells (PMVECs) following stimulation of transmembrane adenylyl cyclase (AC) in the presence or absence of the phosphodiesterase 4 inhibitor rolipram over time. Whereas cAMP was detected in EVs isolated from endothelial cells derived from different vascular beds, it was highest in EVs isolated from PMVECs. Treatment of PMVECs with agents that increase near-membrane cAMP led to an increase in cAMP within corresponding EVs, yet there was no increase in EV number. Elevated cell cAMP, measured by whole cell measurements, peaked 15 min after treatment, yet in EVs the peak increase in cAMP was delayed until 60 min after cell stimulation. Cyclic AMP was also increased in EVs collected from the perfusate of isolated rat lungs stimulated with isoproterenol and rolipram, thus corroborating cell culture findings. When added to unperturbed confluent PMVECs, EVs containing elevated cAMP were not barrier disruptive like cytosolic cAMP but maintained monolayer resistance. In conclusion, PMVECs release EVs containing cAMP, providing an additional compartment to cAMP signaling.


Subject(s)
Cell Communication , Cyclic AMP/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Lung/metabolism , Second Messenger Systems , Adenylyl Cyclases/metabolism , Animals , Endothelial Cells/cytology , Lung/cytology , Male , Rats , Rats, Sprague-Dawley
3.
Adv Exp Med Biol ; 975 Pt 1: 435-446, 2017.
Article in English | MEDLINE | ID: mdl-28849473

ABSTRACT

Taurine forms a conjugate in the mitochondria with a uridine residue in the wobble position of tRNALeu(UUR). The resulting product, 5-taurinomethyluridine tRNALeu(UUR), increases the interaction between the UUG codon and AAU anticodon of tRNALeu(UUR), thereby improving the decoding of the UUG codon. We have shown that the protein most affected by the taurine conjugation product is ND6, which is a subunit of complex I of the respiratory chain. Thus, taurine deficiency exhibits reduced respiratory chain function. Based on these findings, we proposed that the taurine deficient heart is energy deficient. To test this idea, hearts were perfused with buffer containing acetate and glucose as substrates. The utilization of both substrates, as well as the utilization of endogenous lipids, was significantly reduced in the taurine deficient heart. This led to a 25% decrease in ATP production, an effect primarily caused by diminished aerobic metabolism and respiratory function. In addition, inefficient oxidative phosphorylation causes a further decrease in ATP generation. The data support the idea that reductions in energy metabolism, including oxidative phosphorylation, ATP generation and high energy phosphate content, contribute to the severity of the cardiomyopathy. The findings are also consistent with the hypothesis that taurine deficiency and reduced myocardial energy content increases mortality of the taurine deficient, failing heart. The clinical implications of these findings are addressed.


Subject(s)
Energy Metabolism/drug effects , Heart/drug effects , Myocardium/metabolism , Taurine/deficiency , Animals , Energy Metabolism/physiology , Male , Organ Culture Techniques , Rats , Rats, Wistar
4.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1430-7, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26475732

ABSTRACT

Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10.


Subject(s)
Adenylyl Cyclases/metabolism , Bicarbonates/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Protein Isoforms/metabolism , Pulmonary Edema/chemically induced , Animals , Capillary Permeability/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cytosol/drug effects , Cytosol/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Lung/drug effects , Lung/metabolism , Male , Pulmonary Edema/metabolism , Rats, Sprague-Dawley , Respiratory Distress Syndrome/metabolism , Sepsis/metabolism
6.
Am J Physiol Heart Circ Physiol ; 308(3): H232-9, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25437920

ABSTRACT

Taurine is a beta-amino acid found in very high concentration in the heart. Depletion of these intracellular stores results in the development of cardiomyopathy, thought to be mediated by abnormal sarcoplasmic reticular (SR) Ca(2+) transport. There is also evidence that taurine directly alters the Ca(2+) sensitivity of myofibrillar proteins. Major regulators of SR Ca(2+) ATPase (SERCA2a) are the phosphorylation status of a regulatory protein, phospholamban, and SERCA2a expression, which are diminished in the failing heart. The failing heart also exhibits reductions in myofibrillar Ca(2+) sensitivity, a property regulated by the phosphorylation of the muscle protein, troponin I. Therefore, we tested the hypothesis that taurine deficiency leads to alterations in SR Ca(2+) ATPase activity related to reduced phospholamban phosphorylation and expression of SERCA2a. We found that a sequence of events, which included elevated protein phosphatase 1 activity, reduced autophosphorylation of CaMKII, and reduced phospholamban phosphorylation, supports the reduction in SR Ca(2+) ATPase activity. However, the reduction in SR Ca(2+) ATPase activity was not caused by reduced SERCA2a expression. Taurine transporter knockout (TauTKO) hearts also exhibited a rightward shift in the Ca(2+) dependence of the myofibrillar Ca(2+) ATPase, a property that is associated with an elevation in phosphorylated troponin I. The findings support the observation that taurine deficient hearts develop systolic and diastolic defects related to reduced SR Ca(2+) ATPase activity, a change mediated in part by reduced phospholamban phosphorylation.


Subject(s)
Excitation Contraction Coupling , Heart/physiology , Myocardium/metabolism , Protein Processing, Post-Translational , Taurine/deficiency , Animals , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Myocardial Contraction , Phosphorylation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Troponin I/metabolism
7.
J Biomed Sci ; 17 Suppl 1: S2, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20804594

ABSTRACT

Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.


Subject(s)
Muscle, Skeletal/metabolism , Myocardium/metabolism , Animals , Cell Membrane/metabolism , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Muscle Contraction/physiology , Oxidative Stress , Taurine/metabolism , Water-Electrolyte Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...