Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(7): 075105, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068093

ABSTRACT

We designed and built a mobile experimental set-up for studying the interaction of ion beams with solid samples in a wide temperature range from 9 to 300 K. It is either possible to mount up to three samples prepared ex situ or to prepare samples by condensation of molecules from gases or vapours onto IR or Visible-ultraviolet (Vis-UV) transparent windows. The physico-chemical evolution during irradiation can be followed in situ with different analysis techniques including Fourier transform infrared spectroscopy, Vis-UV, and quadrupole mass spectrometry.

2.
Radiat Prot Dosimetry ; 180(1-4): 115-119, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29177426

ABSTRACT

The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.


Subject(s)
Deuterium/analysis , Equipment Design , Lithium/chemistry , Neutrons , Particle Accelerators/instrumentation , Protons , Computer Simulation , Radiation Dosage
3.
Rev Sci Instrum ; 87(11): 113901, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910696

ABSTRACT

An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10-10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams. Preliminary results using the different on-line characterization techniques to study the formation of nano-hillocks on silicon and mica substrates are presented to illustrate the performances of the setup.

4.
J Phys Chem B ; 117(46): 14497-508, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24168676

ABSTRACT

With the aim of understanding the electronic excitation, charge or reactive species transfers occurring during irradiation, we studied the role of the aromatic content on ethylene/styrene random copolymers (PES) and on cyclohexane/benzene glasses (amorphous organic solids). Radiation-induced modifications were monitored in situ, at the molecular level, using Fourier transform infrared spectroscopy (FTIR). Irradiations were performed under a vacuum, and thanks to in situ measurements, oxidation was avoided. We followed both the C═C bond creation in the aliphatic moiety and the destruction of the aromatic moiety. The influence of the irradiation temperature was investigated by irradiating samples at room temperature and at 11 K. At such a low temperature, long-range migration hardly occurs and its influence is considerably reduced or could even vanish. Therefore, low temperature irradiation gives insight on the relative influence of reactive species transport and electronic excitation and charge transport. We found that the effect of lowering the PES irradiation temperature from room temperature to 11 K is small, indicating a minor role for the reactive species transport. Moreover, the two chosen systems allow the examination of the relative magnitude of intra- and intermolecular transfers. We demonstrate that, under conditions where reactive species are almost frozen, intermolecular transfers are very efficient.

5.
Rev Sci Instrum ; 83(1): 013902, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299965

ABSTRACT

The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX ("Analyse en Ligne sur IRRSUD par diffraction de rayons X"), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accélérateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO(3). We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO(3), which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO(3), defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.

6.
J Phys Chem B ; 116(6): 1772-6, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-22236059

ABSTRACT

Molecules containing aromatics systems are more stable in the presence of ionizing radiations than alkanes. In the same way, introducing aromatic rings into aliphatic compounds increases their stability. The protective effect is nonlocal and likely results from the transfer of energy and species from the aliphatic moiety to the aromatic one. For years, it was commonly assumed that the aromatic moiety, which is very radiation resistant, accommodates the extra energy remaining unaffected. The use of Fourier transform infrared spectroscopy, online with high energy ion beam irradiation of ethylene/styrene random copolymers, allows us to bring experimental evidence that the benzene rings are sensitized by transfer reactions and consequently that this effect is more important in polymers with low benzene ring molar content.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(4): 797-814, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11345255

ABSTRACT

Carbon nanoparticles synthesised by laser pyrolysis of small hydrocarbons are deposited at low energy on a silicon substrate. Infrared spectroscopy of the as-formed films are studied as a function of the synthesis parameters and post-treatments, such as annealing and heavy ion irradiation. Correlation between infrared spectroscopy and multiscale organisation of the samples is made through transmission electron microscopy, including image analysis. Changes in infrared spectra are analysed in terms of the carbon network building. The relevance of the results to model the structure and spectroscopy of carbon dust in the carbon-rich circumstellar media is discussed.


Subject(s)
Carbon/chemistry , Cosmic Dust/analysis , Spectrophotometry, Infrared/methods , Astronomical Phenomena , Astronomy , Models, Chemical , Particle Size , Space Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...