Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 257: 121691, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705069

ABSTRACT

The wastewater industry and the energy system are undergoing significant transformations to address climate change and environmental pollution. Green hydrogen, which will be mainly obtained from renewable electricity water electrolysis (Power-to-Hydrogen, PtH), has been considered as an essential energy carrier to neutralize the fluctuations of renewable energy sources. PtH, or Power-to-X (PtX), has been allocated to multiple sectors, including industry, transport and power generation. However, considering its large potential for implementation in the wastewater sector, represented by Water Resource Recovery Facilities (WRRFs), the PtX concept has been largely overlooked in terms of planning and policymaking. This paper proposes a concept to implement PtX at WRRFs, where sourcing of water, utilization of the oxygen by-product, and PtX itself can be sustainable and diversified strategies. Potential value chains of PtX are presented and illustrated in the frame of a WWRF benchmark simulation model, highlighting the applications of oxygen from PtX through pure oxygen aeration and ozone disinfection. Opportunities and challenges are highlighted briefly, and so is the prospective outlook to the future. Ultimately, it is concluded that 'coupling PtX to WRRFs' is a promising solution, which will potentially bring sustainable opportunities for both WRRFs and the energy system. Apart from regulatory and economic challenges, the limitations in coupling PtX to WRRFs mainly come from energy efficiency concerns and the complexity of the integration of the water framework and the energy system.


Subject(s)
Wastewater , Wastewater/chemistry , Water Resources , Water Purification , Waste Disposal, Fluid/methods , Oxygen , Conservation of Water Resources
2.
Sci Total Environ ; 822: 153678, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35131239

ABSTRACT

This study presents an extensive plant-wide model-based assessment of four alternative activated sludge (AS) configurations for biological nitrogen (N) and phosphorus (P) removal under uncertain influent loads and characteristics. Zeekoegat wastewater treatment plant (WWTP) in South Africa was chosen as case study due to its flexible design that enables operation in four different AS configurations: 3-stage Bardenpho (A2O), University of Cape Town (UCT), UCT modified (UCTM), and Johannesburg (JHB). A metamodeling based global sensitivity analysis was performed on a steady-state plant-wide simulation model using Activated Sludge Model No. 2d with the latest extension of physico-chemical processes describing the plant-wide P transformations. The simulation results showed that the predictions of effluent chemical oxygen demand (COD), N and P using the proposed approach fall within the interquartile range of measured data. The study also revealed that process configuration can affect: 1) how influent uncertainty is reflected in model predictions for effluent quality and cost related performances, and 2) the parameter rankings based on variance decomposition, particularly for effluent phosphate, sludge disposal and methane production. The results identified UCT and UCTM as more robust configurations for P removal (less propagated uncertainty and less sensitivity to N load) in the expense of incomplete denitrification. Moreover, based on the results of Monte-Carlo based scenario analysis, the balanced SRT for N and P removal is more sensitive to influent load variation/uncertainty for the A2O and JHB configurations. This gives a more operational flexibility to UCT and UCTM, where a narrow SRT range can ensure both N and P removal.


Subject(s)
Sewage , Waste Disposal, Fluid , Bioreactors , Nitrogen , Nutrients , Phosphorus/chemistry , Sewage/chemistry , South Africa , Uncertainty , Waste Disposal, Fluid/methods
3.
Water Res ; 190: 116714, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33307375

ABSTRACT

The objective of this paper is to use plant-wide modeling to assess the net impacts of varying sludge management strategies. Special emphasis is placed on effluent quality, operational cost and potential resource recovery (energy, nutrients). The study is particularly focused on a centralized bio-solids beneficiation facility (BBF), which enables larger, more capital intensive sludge management strategies. Potential barriers include the ability to process reject streams from multiple donor plants in the host plant. Cape Flats (CF) wastewater treatment works (WWTW) (Cape Town, South Africa) was used as a relevant test case since it is currently assessing to process sludge cake from three nearby facilities (Athlone, Mitchells Plain and Wildevoelvlei). A plant-wide model based on the Benchmark Simulation Model no 2 (BSM2) extended with phosphorus transformations was adapted to the CF design / operational conditions. Flow diagram and model parameters were adjusted to reproduce the influent, effluent and process characteristics. Historical data between January 2014 and December 2019 was used to compare full-scale measurements and predictions. Next, different process intensification / mitigation technologies were evaluated using multiple criteria. Simulation values for COD, TSS, VSS/TSS ratio, TN, TP, NH4+/NH3, HxPO43-x, NOx alkalinity and pH fall within the interquartile ranges of measured data. The effects of the 2017 severe drought on influent variations and biological phosphorus removal are successfully reproduced for the entire period with dynamic simulations. Indeed, 80% of all dynamically simulated values are included within the plant measurement uncertainty ranges. Sludge management analysis reveals that flow diagrams with thermal hydrolysis pre-treatment (THP) result in a better energy balance in spite of having higher heat demands. The flow diagram with THP is able to i) increase biodegradability/solubility, ii) handle higher sludge loads, iii) change methanogenic microbial population and iv) generate lower solids volumes to dispose by improving sludge dewaterability. The study also reveals the importance of including struvite precipitation and harvesting (SPH) technology, and the effect that pH in the AD and the use of chemicals (NaOH, MgO) may have on phosphorus recovery. Model-based results indicate that the current aerobic volume in the water line (if properly aerated) would be able to handle the returns from the sludge line and the contribution of a granular partial nitritation/Anammox (PN/ANX) reactor on the overall nitrogen removal would be marginal. However autotrophic N denitrification generates a much lower sludge production and therefore increases AD treatment capacity. The study shows for the very first time in Africa how the use of a (calibrated) plant-wide model could assist water utilities to decide between competing plant layouts when upgrading a WWTW.


Subject(s)
Sewage , Water Purification , Bioreactors , Nitrogen , South Africa , Waste Disposal, Fluid , Wastewater
4.
Sci Total Environ ; 751: 141706, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33181990

ABSTRACT

Industrial parks have a high potential for recycling and reusing resources such as water across companies by creating symbiosis networks. In this study, we introduce a mathematical optimization framework for the design of water network integration in industrial parks formulated as a large-scale standard mixed-integer non-linear programming (MINLP) problem. The novelty of our approach relies on i) developing a multi-level incremental optimization framework for water network synthesis, ii) including prior knowledge of water demand growth and projected water scarcity to evaluate the significance of water-saving solutions, iii) incorporating a comprehensive formulation of the water network synthesis problem including multiple pollutants and different treatment units and iv) performing a multi-objective optimization of the network including freshwater savings and relative cost of the network. The significance of the proposed optimization framework is illustrated by applying it to an existing industrial park in a water-scarce region in Kenya. Firstly, we illustrated the benefits of including prior knowledge to prevent an over-design of the network at the early stages. In the case study, we achieved a more flexible and expandable water network with 36% lower unit cost at the early stage and 15% lower unit cost at later stages for overall maximum freshwater savings of 25%. Secondly, multi-objective analysis suggests an optimum freshwater savings of 14% to reduce the unit cost of the network by half. Moreover, the significance of symbiosis networks is highlighted by showing that intra-company connections can only achieve a maximum freshwater savings of 17% with significantly higher unit cost (+45%). Finally, we showed that the values of symbiosis connectivity index in the Pareto front correspond to higher freshwater savings, indicating the significant role of the symbiosis network in the industrial park under study. This is the first study, where all the above elements have been taken into account simultaneously for the design of a water reuse network.

6.
Water Sci Technol ; 81(2): 241-252, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32333657

ABSTRACT

Solids-flux theory (SFT) and state-point analysis (SPA) are used for the design, operation and control of secondary settling tanks (SSTs). The objectives of this study were to assess uncertainties, propagating from flow and solids loading boundary conditions as well as compression settling behaviour to the calculation of the limiting flux (JL) and the limiting solids concentration (XL). The interpreted computational fluid dynamics (iCFD) simulation model was used to predict one-dimensional local concentrations and limiting solids fluxes as a function of loading and design boundary conditions. A two-level fractional factorial design of experiments was used to infer the relative significance of factors unaccounted for in conventional SPA. To move away from using semi-arbitrary safety factors, a systematic approach was proposed to calculate the maximum SST capacity by employing a factor of 23% and a regression meta-model to correct values of JL and XL, respectively - critical for abating hydraulic effects under wet-weather flow conditions.


Subject(s)
Hydrodynamics , Waste Disposal, Fluid , Models, Theoretical , Motor Vehicles , Sewage , Uncertainty
7.
Water Res ; 83: 396-411, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26248321

ABSTRACT

The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events.


Subject(s)
Metal Nanoparticles/chemistry , Metals, Heavy/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Hydrodynamics , Hydrogen-Ion Concentration , Iron/analysis , Models, Theoretical , Oxygen/analysis , Time Factors , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation
8.
Water Res ; 78: 121-32, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25935367

ABSTRACT

The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used.


Subject(s)
Actinobacteria , Chloroflexi , Hydrodynamics , Sewage/microbiology , Models, Theoretical , Rheology , Waste Disposal, Fluid/methods
9.
Water Res ; 68: 821-30, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25480432

ABSTRACT

Current research considers wastewater as a source of energy, nutrients and water and not just a source of pollution. So far, mainly energy intensive physical and chemical unit processes have been developed to recover some of these resources, and less energy and resource demanding alternatives are needed. Here, we present a modified enhanced biological phosphorus removal and recovery system (referred to as EBP2R) that can produce optimal culture media for downstream micro-algal growth in terms of N and P content. Phosphorus is recovered as a P-stream by diversion of some of the effluent from the upstream anaerobic reactor. By operating the process at comparably low solids retention times (SRT), the nitrogen content of wastewater is retained as free and saline ammonia, the preferred form of nitrogen for most micro-algae. Scenario simulations were carried out to assess the capacity of the EBP2R system to produce nutrient rich organic-carbon depleted algal cultivation media of target composition. Via SRT control, the quality of the constructed cultivation media can be optimized to support a wide range of green micro-algal growth requirements. Up to 75% of the influent phosphorus can be recovered, by diverting 30% of the influent flow as a P-stream at an SRT of 5 days. Through global sensitivity analysis we find that the effluent N-to-P ratio and the P recovered are mainly dependent on the influent quality rather than on biokinetics or stoichiometry. Further research is needed to demonstrate that the system performance predicted through the model-based design can be achieved in reality.


Subject(s)
Chlorophyta/growth & development , Culture Media/chemistry , Microalgae/growth & development , Sewage/chemistry , Waste Disposal, Fluid/methods , Aerobiosis , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Chlorophyta/drug effects , Culture Media/pharmacology , Kinetics , Microalgae/drug effects , Nitrogen/chemistry , Phosphorus/chemistry , Reproducibility of Results , Sewage/microbiology
10.
Water Res ; 66: 447-458, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25243657

ABSTRACT

Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full-scale measurements. Finally, it was shown that the representation of compression settling in the CFD model can significantly influence the prediction of sludge distribution in the SSTs under dry- and wet-weather flow conditions.


Subject(s)
Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/chemistry , Algorithms , Bayes Theorem , Calibration , Computer Simulation , Hydrodynamics , Markov Chains , Monte Carlo Method , Rheology , Temperature , Water Pollutants, Chemical/analysis , Water Purification/methods
11.
Water Res ; 63: 209-21, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25003213

ABSTRACT

Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future.


Subject(s)
Models, Theoretical , Waste Disposal, Fluid , Weather , Calibration , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...