Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep ; 37(2): 255-60, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24497654

ABSTRACT

BACKGROUND: Substantial discrepancies exist in the type of sleep studies performed to diagnose pediatric obstructive sleep apnea (OSA) in different countries. Respiratory polygraphic (RP) recordings are primarily performed in sleep laboratories in Europe, whereas polysomnography (PSG) constitutes the majority in the US and Australia. Home RP show consistent apnea-hypopnea index (AHI) underscoring, primarily because the total recording time is used as the denominator when calculating the AHI compared to total sleep time (TST). However, laboratory-based RP are less likely affected, since the presence of sleep technicians and video monitoring may enable more accurate TST estimates. We therefore examined differences in AHI in PSG and in-lab RP, and whether RP-based AHI may impact clinical decision making. METHODS: Of all the children assessed for possible OSA who underwent PSG evaluation, 100 were identified and divided into 4 groups: (A) those with AHI < 1/h TST (n = 20), (B) 1 ≤ AHI < 5/h TST (n = 40), (C) 5 ≤ AHI < 10/h TST (n = 20), and (D) AHI ≥ 10/h TST (n = 20). Electroencephalography, electrooculography, and electromyography channels were deleted from the original unscored recordings to transform them into RP, and then rescored in random sequence. AHI-RP were compared to AHI-PSG, and therapeutic decisions based on AHI-RP and AHI-PSG were formulated and analyzed using clinical details derived from the patient's clinic letter. RESULTS: Bland Altman analysis showed that in lab RP underestimated the AHI despite more accurate estimates of TST. This underestimation was due to missed hypopneas causing arousals without desaturation. Basing the therapeutic management decision on RP instead of PSG results changed the clinical management in 23% of all patients. The clinical management for patients in groups A and D was unaffected. However, 27.5% of patients in group B would have been given no treatment, as they would be diagnosed as having no OSA (AHI < 1/h TST) when they should have received a trial of anti-inflammatory therapy or been referred for ear, nose, and throat (ENT) review. Sixty percent of patients in group C would have received either a trial of medical treatment to treat mild OSA or no treatment, instead of referral to ENT services or commencement of continuous positive airway pressure. CONCLUSION: Apnea-hypopnea index (AHI) is underestimated in respiratory polygraphy (RP), and the disparity in AHI-RP and AHI-polysomnography can significantly affect clinical management decisions, particularly in children with mild and moderate obstructive sleep apnea (1 < AHI < 10/h total sleep time).


Subject(s)
Polysomnography/methods , Sleep Apnea, Obstructive/diagnosis , Adolescent , Arousal , Child , Child, Preschool , Electroencephalography , Electromyography , Electrooculography , Female , Humans , Male , Pediatrics , Sleep Apnea, Obstructive/physiopathology
2.
PLoS One ; 8(7): e69710, 2013.
Article in English | MEDLINE | ID: mdl-23936084

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is a low-grade inflammatory disease affecting the cardiovascular and metabolic systems. Increasing OSA severity reduces T-regulatory lymphocytes (Tregs) in OSA children. Since Tregs modulate endothelial activation, and attenuate insulin resistance, we hypothesized that Tregs are associated with endothelial and metabolic dysfunction in pediatric OSA. METHODS: 50 consecutively recruited children (ages 4.8-12 years) underwent overnight polysomnography and fasting homeostatic model (HOMA) of insulin resistance was assessed. Percentage of Tregs using flow cytometry, and endothelial function, expressed as the time to peak occlusive hyperemia (Tmax), were examined. In a subgroup of children (n = 21), in vitro Treg suppression tests were performed. RESULTS: Circulating Tregs were not significantly associated with either BMI z score or HOMA. However, a significant inverse correlation between percentage of Tregs and Tmax emerged (p<0.0001, r = -0.56). A significant negative correlation between Tregs suppression and the sleep pressure score (SPS), a surrogate measure of sleep fragmentation emerged (p = 0.02, r = -0.51) emerged, but was not present with AHI. CONCLUSIONS: Endothelial function, but not insulin resistance, in OSA children is strongly associated with circulating Tregs and their suppressive function, and appears to correlate with sleep fragmentation. Thus, alterations in T cell lymphocytes may contribute to cardiovascular morbidity in pediatric OSA.


Subject(s)
Endothelium, Vascular/metabolism , Sleep Apnea, Obstructive/immunology , Sleep Apnea, Obstructive/metabolism , T-Lymphocytes, Regulatory/immunology , Body Mass Index , Case-Control Studies , Child , Child, Preschool , Female , Humans , Insulin Resistance , Lymphocyte Count , Male , Polysomnography , Sleep Apnea, Obstructive/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...