Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672758

ABSTRACT

The neglected Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi. Despite CD dispersion throughout the world, it prevails in tropical areas affecting mainly poor communities, causing devastating health, social and economic consequences. Clinically, CD is marked by a mildly symptomatic acute phase, and a chronic phase characterized by cardiac and/or digestive complications. Current treatment for CD relies on medications with strong side effects and reduced effectiveness. The complex interaction between the parasite and the host outlines the etiology and progression of CD. The unique characteristics and high adaptability of T. cruzi, its mechanisms of persistence, and evasion of the immune system seem to influence the course of the disease. Despite the efforts to uncover the pathology of CD, there are many gaps in understanding how it is established and reaches chronicity. Also, the lack of effective treatments and protective vaccines constitute challenges for public health. Here, we explain the background in which CD is established, from the peculiarities of T. cruzi molecular biology to the development of the host's immune response leading to the pathophysiology of CD. We also discuss the state of the art of treatments for CD and current challenges in basic and applied science.

2.
Sci Rep ; 14(1): 5000, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424216

ABSTRACT

Trypanosoma cruzi is the protozoan that causes Chagas disease (CD), an endemic parasitosis in Latin America distributed around the globe. If CD is not treated in acute phase, the parasite remains silent for years in the host's tissues in a chronic form, which may progress to cardiac, digestive or neurological manifestations. Recently, studies indicated that the gastrointestinal tract represents an important reservoir for T. cruzi in the chronic phase. During interaction T. cruzi and host cells release extracellular vesicles (EVs) that modulates the immune system and infection, but the dynamics of secretion of host and parasite molecules through these EVs is not understood. Now, we used two cell lines: mouse myoblast cell line C2C12, and human intestinal epithelial cell line Caco-2to simulate the environments found by the parasite in the host. We isolated large EVs (LEVs) from the interaction of T. cruzi CL Brener and Dm28c/C2C12 and Caco-2 cells upon 2 and 24 h of infection. Our data showed that at two hours there is a strong cellular response mediated by EVs, both in the number, variety and enrichment/targeting of proteins found in LEVs for diverse functions. Qualitative and quantitative analysis showed that proteins exported in LEVs of C2C12 and Caco-2 have different patterns. We found a predominance of host proteins at early infection. The parasite-host cell interaction induces a switch in the functionality of proteins carried by LEVs and a heterogeneous response depending on the tissues analyzed. Protein-protein interaction analysis showed that cytoplasmic and mitochondrial homologues of the same parasite protein, tryparedoxin peroxidase, were differentially packaged in LEVs, also impacting the interacting molecule of this protein in the host. These data provide new evidence that the interaction with T. cruzi leads to a rapid tissue response through the release of LEVs, reflecting the enrichment of some proteins that could modulate the infection environment.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Caco-2 Cells , Chagas Disease/parasitology , Extracellular Vesicles/metabolism , Host-Parasite Interactions
3.
Life (Basel) ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37763203

ABSTRACT

Giardia intestinalis is a flagellated unicellular protozoan that colonizes the small intestine, causing the diarrheal disease called giardiasis. The production of extracellular vesicles (EVs) by G. intestinalis and the role of these EVs in the parasite's interaction with the host have been described. According to biogenesis, EVs are grouped mainly into large (microvesicles-derived from the plasma membrane) and small (exosomes-derived from multivesicular bodies). Populations of EVs are heterogeneous, and improved methods to separate and study them are needed to understand their roles in cell physiology and pathologies. This work aimed to enrich the large extracellular vesicles (LEVs) of G. intestinalis in order to better understand the roles of these vesicles in the interaction of the parasite with the host. To achieve the enrichment of the LEVs, we have modified our previously described method and compared it by protein dosage and using Nano tracking analysis. Giardia intestinalis vesiculation was induced by incubation in a TYI-S-33 medium without serum, to which 1 mM of CaCl2 was added at 37 °C for 1 h. Then, the supernatant was centrifuged at 15,000× g for 1 h (15 K 1 h pellet), 15,000× g for 4 h (15 K 4 h pellet) and 100,000× g for 1.5 h (100 K 1h30 pellet). The pellet (containing EVs) was resuspended in 1× PBS and stored at 4 °C for later analysis. The EVs were quantified based on their protein concentrations using the Pierce BCA assay, and by nanoparticle tracking analysis (NTA), which reports the concentration and size distribution of the particles. The NTA showed that direct ultracentrifugation at 100,000× g for 1.5 h and centrifugation at 15,000× g for 4 h concentrated more EVs compared to centrifugation at 15,000× g for 1 h. Additionally, it revealed that centrifugation at 15,000× g 4 h was able to concentrate at the same particle concentration levels as a direct ultracentrifugation at 100,000× g for 1.5 h. As for the enrichment of LEVs, the NTA has shown a higher concentration of LEVs in direct ultracentrifugation at 100,000× g for 1.5 h, and in centrifugation at 15,000× g for 4 h, compared to centrifugation at 15,000× g for 1 h. Our results have shown that the most used method at 15,000× g for 1 h is not enough to obtain a representative population of large EVs, and we suggest that LEVs released by G. intestinalis can be better enriched by direct ultracentrifugation at 100,000× g for 1.5 h, or by centrifugation at 15,000× g for 4 h.

4.
Genes (Basel) ; 14(8)2023 08 14.
Article in English | MEDLINE | ID: mdl-37628675

ABSTRACT

Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy.


Subject(s)
Malaria , Placenta , Infant, Newborn , Pregnancy , Infant , Female , Humans , Animals , Mice , Mice, Inbred CBA , Complement Activation , Biomarkers
5.
Elife ; 122023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318983

ABSTRACT

Parasites can use extracellular vesicles and cellular projections called cytonemes to communicate with one another.


Subject(s)
Extracellular Vesicles , Parasites , Animals
6.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993487

ABSTRACT

While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, we show that the microRNA-(miR)203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. Reciprocally, loss of miR-203 function in placode, but not neural crest, cells perturbs trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses a miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.

8.
Article in English | MEDLINE | ID: mdl-35898167

ABSTRACT

Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Tissue Distribution , Extracellular Vesicles/metabolism , Drug Carriers , Drug Delivery Systems , Neoplasms/diagnosis , Neoplasms/drug therapy
9.
Front Cell Infect Microbiol ; 12: 980817, 2022.
Article in English | MEDLINE | ID: mdl-36467728

ABSTRACT

Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.


Subject(s)
Chagas Disease , Exosomes , Extracellular Vesicles , Trypanosoma cruzi , Animals , Cell Communication , Chagas Disease/therapy
10.
Environ Pollut ; 313: 120140, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36100121

ABSTRACT

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and BDE-209 (decabromodiphenyl ether) are persistent organic pollutants (POPs) produced by industrial activities and associated with several diseases. TCDD is a known human carcinogen, but few studies investigated about the effects of exposure to both compounds, i.e., whether BDE-209 and TCDD can render tumor cells more aggressive and metastatic. In the current study we investigated if the exposure of B16-F1 and B16-F10 melanoma murine cells to environmental relevant concentrations of TCDD and BDE-209 at 24 h and 15-day exposure modulates the expression of genes related to metastasis, making the cells more aggressive. Both pollutants did not affect cell viability but lead to increase of cell proliferation, including the upregulation of vimentin, MMP2, MMP9, MMP14 and PGK1 gene expression and downregulation of E-cadherin, TIMP2, TIMP3 and RECK, strongly suggesting changes in cell phenotypes defined as epithelial to mesenchymal transition (EMT) in BDE-209 and TCDD-exposed cells. Foremost, increased expression of metalloproteinases and decreased expression of their inhibitors made B16-F1 cells similar the more aggressive B16-F10 cell line. Also, the higher secretion of extracellular vesicles by cells after acute exposure to BDE-209 could be related with the phenotype changes. These results are a strong indication of the potential of BDE-209 and TCDD to modulate cell phenotype, leading to a more aggressive profile.


Subject(s)
Environmental Pollutants , Melanoma , Polychlorinated Dibenzodioxins , Animals , Cadherins , Carcinogens , Environmental Pollutants/pharmacology , Epithelial-Mesenchymal Transition , GPI-Linked Proteins , Halogenated Diphenyl Ethers , Humans , Matrix Metalloproteinase 14/pharmacology , Matrix Metalloproteinase 2/pharmacology , Matrix Metalloproteinase 9 , Mice , Persistent Organic Pollutants , Polychlorinated Dibenzodioxins/toxicity , Vimentin/pharmacology
11.
Front Cell Infect Microbiol ; 12: 1046681, 2022.
Article in English | MEDLINE | ID: mdl-36590580

ABSTRACT

Introduction: Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi, which uses blood-feeding triatomine bugs as a vector to finally infect mammalian hosts. Upon entering the host, the parasite needs to effectively evade the attack of the complement system and quickly invade cells to guarantee an infection. In order to accomplish this, T. cruzi expresses different molecules on its surface and releases extracellular vesicles (EVs). Methods: Here, we have selected a population of epimastigotes (a replicative form) from T. cruzi through two rounds of exposure to normal human serum (NHS), to reach 30% survival (2R population). This 2R population was characterized in several aspects and compared to Wild type population. Results: The 2R population had a favored metacyclogenesis compared with wild-type (WT) parasites. 2R metacyclic trypomastigotes had a two-fold increase in resistance to complementmediated lysis and were at least three times more infective to eukaryotic cells, probably due to a higher GP82 expression in the resistant population. Moreover, we have shown that EVs from resistant parasites can transfer the invasive phenotype to the WT population. In addition, we showed that the virulence phenotype of the selected population remains in the trypomastigote form derived from cell culture, which is more infective and also has a higher rate of release of trypomastigotes from infected cells. Conclusions: Altogether, these data indicate that it is possible to select parasites after exposure to a particular stress factor and that the phenotype of epimastigotes remained in the infective stage. Importantly, EVs seem to be an important virulence fator increasing mechanism in this context of survival and persistence in the host.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Animals , Humans , Protozoan Proteins/genetics , Chagas Disease/parasitology , Cell Differentiation , Complement System Proteins , Phenotype , Extracellular Vesicles/metabolism , Mammals/metabolism
12.
Rev. patol. trop ; 51(4): 285-290, 2022.
Article in English | LILACS, BVSDIP | ID: biblio-1537416

ABSTRACT

The COVID-19 pandemic brought enormous challenges for health, scientists and academic world two years ago. Social isolation and the inabilities of face-to-face activities generated the emergence of many educational and scientific initiatives. Remote activities gave information and brought company and affection to people which allowed students and professionals from different parts of the world to integrate. In this report we are showing the experience from three initiatives in South America of scientific dissemination in infectious diseases. We discuss the scope of having a permanent practice for access and integration in science using remote communication, which can give great benefits in unequal societies.


Subject(s)
Humans , Parasitology/education , Video-Audio Media , COVID-19
13.
Biochem Mol Biol Educ ; 49(6): 888-903, 2021 11.
Article in English | MEDLINE | ID: mdl-34652877

ABSTRACT

Active teaching methodologies have been placed as a hope for changing education at different levels, transiting from passive lecture-centered to student-centered learning. With the health measures of social distance, the COVID-19 pandemic forced a strong shift to remote education. With the challenge of delivering quality education through a computer screen, we validated and applied an online course model using active teaching tools for higher education. We incorporated published active-learning strategies into an online construct, with problem-based inquiry and design of inquiry research projects to serve as our core active learning tool. The gains related to students' science learning experiences and their attitudes toward science were assessed by applying questionnaires before, during, and after the course. The course counted on the participation of 83 students, most of them (60.8%) from postgraduate students. Our results show that engagement provided by active learning methods can improve performance both in hard and soft skills. Students' participation seems to be more relevant when activities require the interaction of information, prediction, and reasoning, such as open-ended questions and design of research projects. Therefore, our data show that, in pandemic, active learning tools benefit students and improve their critical thinking and their motivation and positive positioning in science.


Subject(s)
Attitude , COVID-19/epidemiology , Education, Distance/methods , Pandemics , Students, Medical/psychology , Thinking , COVID-19/virology , Education, Distance/standards , Humans , SARS-CoV-2/isolation & purification
14.
Toxicol Lett ; 350: 202-212, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34314803

ABSTRACT

Envenomation by the Loxosceles genus spiders is a recurring health issue worldwide and specially in the Americas. The physiopathology of the envenomation is tightly associated to the venom's rich toxin composition, able to produce a local dermonecrotic lesion that can evolve systemically and if worsened, might result in multiple organ failure and lethality. The cellular and molecular mechanisms involved with the physiopathology of Loxoscelism are not completely understood, however, the venom's Phospholipases D (PLDs) are known to trigger membrane injury in various cell types. Here, we report for the first time the Loxosceles venom's ability to stimulate the production of extracellular vesicles (EVs) in various human cell lineages. Components of the Loxosceles venom were also detectable in the cargo of these vesicles, suggesting that they may be implicated in the process of extracellular venom release. EVs from venom treated cells exhibited phospholipase D activity and were able to induce in vitro hemolysis in human red blood cells and alter the HEK cell membranes' permeability. Nonetheless, the PLD activity was inhibited when an anti-venom PLDs monoclonal antibody was co-administered with the whole venom. In summary, our findings shed new light on the mechanisms underlying cellular events in the context of loxoscelism and suggest a crucial role of EVs in the process of envenomation.


Subject(s)
Cells, Cultured/drug effects , Extracellular Vesicles/drug effects , HEK293 Cells/drug effects , Spider Bites/physiopathology , Spider Venoms/metabolism , Spider Venoms/toxicity , THP-1 Cells/drug effects , Animals , Humans
15.
Int J Biol Macromol ; 183: 1607-1620, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34029585

ABSTRACT

Several classes of toxins are present in the venom of Brown spiders (Loxosceles genus), some of them are highly expressed and others are less expressed. In this work, we aimed to clone the sequence of a little expressed novel toxin from Loxosceles venom identified as a serine protease inhibitor (serpin), as well as to express and characterize its biochemical and biological properties. It was named LSPILT, derived from Loxoscelesserine protease inhibitor-like toxin. Multiple alignment analysis revealed high identity between LSPILT and other serpin molecules from spiders and crab. LSPILT was produced in baculovirus-infected insect cells, resulting in a 46-kDa protein fused to a His-tag. Immunological assays showed epitopes in LSPILT that resemble native venom toxins of Loxosceles spiders. The inhibitory activity of LSPILT on trypsin was found both by reverse zymography and fluorescent gelatin-degradation assay. Additionally, LSPILT inhibited the complement-dependent lysis of Trypanosoma cruzi epimastigotes, reduced thrombin-dependent clotting and suppressed B16-F10 melanoma cells migration. Results described herein prove the existence of conserved serpin-like toxins in Loxosceles venoms. The availability of a recombinant serpin enabled the determination of its biological and biochemical properties and indicates potential applications in future studies regarding the pathophysiology of the envenoming or for biotechnological purposes.


Subject(s)
Antineoplastic Agents/pharmacology , Fibrinolytic Agents/pharmacology , Serpins/genetics , Serpins/metabolism , Spiders/metabolism , Trypanosoma cruzi/drug effects , Amino Acid Sequence , Animals , Baculoviridae , Base Sequence , Cell Line, Tumor , Cell Movement/drug effects , Cloning, Molecular , Mice , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Rabbits , Sf9 Cells , Spider Venoms/genetics , Spider Venoms/metabolism , Spiders/genetics , Trypsin
16.
Mol Immunol ; 132: 172-183, 2021 04.
Article in English | MEDLINE | ID: mdl-33601226

ABSTRACT

The trypanosomatid pathogens Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, currently grouped as TriTryps, have evolved through the time to overcome the upfront innate immune response and establish the infection in humans adapting many aspects of the parasite-cell host interaction. Extracellular vesicles (EVs) emerge as critical structures carrying different key molecules from parasites and target cells that interact continuously during infection. Current information regarding the structure and composition of these vesicles provide new insights into the primary role of TriTryps-EVs reviewed in this work. Expanding knowledge about these critical vesicular structures will promote advances in basic sciences and in translational applications controlling pathogenesis in the neglected tropical diseases caused by TriTryps.


Subject(s)
Extracellular Vesicles/immunology , Leishmania major/immunology , Protozoan Infections/immunology , Trypanosoma brucei brucei/immunology , Trypanosoma cruzi/immunology , Animals , Extracellular Vesicles/parasitology , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/immunology , Protozoan Infections/parasitology
17.
Article in English | MEDLINE | ID: mdl-33072615

ABSTRACT

Giardia intestinalis is a microaerophilic protozoan that is an important etiologic agent of diarrhea worldwide. There is evidence that under diverse conditions, the parasite is capable of shedding extracellular vesicles (EVs) which modulate the physiopathology of giardiasis. Here we describe new features of G. intestinalis EV production, revealing its capacity to shed two different enriched EV populations: large (LEV) and small extracellular vesicles (SEV) and identified relevant adhesion functions associated with the larger population. Proteomic analysis revealed differences in proteins relevant for virulence and host-pathogen interactions between the two EV subsets, such as cytoskeletal and anti-oxidative stress response proteins in LEVS. We assessed the effect of two recently identified inhibitors of EV release in mammalian cells, namely peptidylarginine deiminase (PAD) inhibitor and cannabidiol (CBD), on EV release from Giardia. The compounds were both able to effectively reduce EV shedding, the PAD-inhibitor specifically affecting the release of LEVs and reducing parasite attachment to host cells in vitro. Our results suggest that LEVs and SEVs have a different role in host-pathogen interaction, and that treatment with EV-inhibitors may be a novel treatment strategy for recurrent giardiasis.


Subject(s)
Extracellular Vesicles , Giardia lamblia , Animals , Host-Pathogen Interactions , Protein-Arginine Deiminases , Proteomics
18.
Article in English | MEDLINE | ID: mdl-32175284

ABSTRACT

Trypanosoma cruzi is a protozoan parasite that infects at least 7 million persons in the world (OMS, 2019). In endemic areas, infection normally occurs by vectorial transmission; however, outside, it normally happens by blood and includes congenital transmission. The persistence of T. cruzi during infection suggests the presence of immune evasion mechanisms and the modulation of the anti-parasite response to a profile incapable of eradicating the parasite. Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells (APCs) that patrol tissues with a key role in mediating the interface between the innate and adaptive immune response. Previous results from our lab and other groups have demonstrated that T. cruzi modulates the functional properties of DCs, in vitro and in vivo. During vectorial transmission, metacyclic (m) trypomastigotes (Tps) eliminated along with the insect feces reach the mucous membranes or injured skin. When transmission occurs by the hematic route, the parasite stage involved in the infection is the circulating or blood (b) Tp. Here, we studied in vitro the effect of both infective mTp and bTp in two different populations of DCs, bone marrow-derived DCs (BMDCs) and XS106, a cell line derived from epidermal DCs. Results demonstrated that the interaction of both Tps imparts a different effect in the functionality of these two populations of DCs, suggesting that the stage of T. cruzi and DC maturation status could define the immune response from the beginning of the ingress of the parasite, conditioning the course of the infection.


Subject(s)
Dendritic Cells/immunology , Langerhans Cells/immunology , Trypanosoma cruzi/physiology , Animals , Antigen Presentation , Cell Line , Cell Proliferation , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Interleukin-10/metabolism , Langerhans Cells/metabolism , Langerhans Cells/parasitology , Mice, Inbred C3H , Mice, Inbred C57BL , T-Lymphocytes/physiology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/pathogenicity , Tumor Necrosis Factor-alpha/metabolism
19.
Methods Mol Biol ; 1955: 89-104, 2019.
Article in English | MEDLINE | ID: mdl-30868521

ABSTRACT

Extracellular vesicles (EVs) are heterogeneous membrane-surrounded structures that participate in cellular communications, which comprise exosomes and microvesicles. These vesicles have different biogenesis, and their physiological and pathological roles in chronic and infectious diseases are under constant investigation. In Chagas disease, Trypanosoma cruzi EVs have been described using different approaches. The isolation of T. cruzi-derived EVs has been done mainly using the differential centrifugation technique, and different strategies have been employed for characterization of them. Here, we describe the method to isolate EVs by differential centrifugation and a detection protocol for EVs in T. cruzi-host cell interaction to allow further investigations about this parasite.


Subject(s)
Chagas Disease/metabolism , Chagas Disease/parasitology , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Trypanosoma cruzi/physiology , Animals , Cell Line , Extracellular Vesicles/chemistry , Humans , Proteins/analysis , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/metabolism , Ultracentrifugation/methods
20.
Food Res Int ; 102: 588-594, 2017 12.
Article in English | MEDLINE | ID: mdl-29195989

ABSTRACT

Pectins can modulate the biological responses interacting directly with immune cells. The observed responses can strongly be affected by polysaccharide structural features. We analyzed the intrinsic activation capacity of native and modified sweet pepper pectin on cytokine secretion by THP-1 macrophages as well as compare their effects in the presence of lipopolysaccharide. Modified pectin was obtained by partial acid hydrolysis which promoted the removal of side chains as well as the reduction of molecular weight and the degree of methyl esterification of native pectin. The results showed that both fractions had no effect on THP-1 viability. Native pectin at 300µg/mL increased TNF-α, IL-1ß and IL-10 cytokine secretion by THP-1 macrophages. However, in the presence of lipopolysaccharide, it can attenuate the inflammatory response by reducing the production of the pro-inflammatory cytokines TNF-α and IL-1ß and increasing the anti-inflammatory cytokine IL-10, as well as decreasing the TNF-α/IL-10 and IL-1ß/IL-10 ratios. The structural modifications caused by acid hydrolysis affected the intrinsic activation capacity of native pectin to modulate the cytokines secretion. These results indicate that degree of methyl esterification, molecular weight and presence of side chains are important structural features of pectins involved in the modulation of cytokine secretion by THP-1 macrophages.


Subject(s)
Capsicum/chemistry , Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Pectins/chemistry , Pectins/pharmacology , Humans , Hydrolysis , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/immunology , Structure-Activity Relationship , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...