Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853989

ABSTRACT

Background: Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods: We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results: Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions: Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.

2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38746306

ABSTRACT

Propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2. Because morpholino silencing of the ß1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here we report that adrb1 -/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively. Treatment with metoprolol, a ß1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1 -/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through ß1 receptor antagonism.

3.
Trop Anim Health Prod ; 56(3): 117, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568238

ABSTRACT

Cereals such as triticale may contain high levels of xylans and arabinoxylans, limiting its use in diets since they act as anti-nutritional factors. The objective was to evaluate the effects of the enzyme xylanase included in triticale-based diets on productive performance, digestibility, carcass traits and meat quality in growing-finishing rabbits. Eighty rabbits (New Zealand X California breed), 35 days old, with an average initial live weight of 821 ± 26 g, were used. Twenty animals for treatment were used in each one of the fourth experimental treatments: 0, 4000, 8000 and 12,000 XU/kg of xylanase inclusion (XilaBlend 6X). The rabbits were fed ad libitum and fecal excretion was collected on days 7, 14, 21, 28 and 35 of the experimental period. At the end of the experimental period, the rabbits were slaughtered and carcass characteristics and meat quality were measured. A higher (P < 0.05) live weight was observed in rabbits fed diets with the addition of xylanase enzyme on days 4 and 7 of the experimental period. On the other hand, in the average total tract digestibility of organic matter, no significant difference was observed, similar to what occurred in the carcass traits and nutritional quality of the meat. The inclusion of 8000 XU/kg of xylanase enzyme provided the best values of apparent digestibility of total tract protein and dry matter on the finished stage of rabbits.


Subject(s)
Triticale , Animals , Rabbits , Plant Breeding , Diet/veterinary , Dietary Supplements , Meat
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660801

ABSTRACT

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System , Signal Transduction , Animals , Female , Humans , Male , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hypoxia/metabolism , Hypoxia/complications , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics
5.
Cell Commun Signal ; 22(1): 23, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195510

ABSTRACT

Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Endothelial Cells , Gene Expression Profiling , Transcriptome , Tumor Microenvironment
6.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559771

ABSTRACT

El objetivo del presente estudio consistió en caracterizar la producción científica relacionada con el campo de las ataxias espinocerebelosas, las cuales constituyen enfermedades neurodegenerativas, manifestadas por cuadros clínicos progresivos e invalidantes. La investigación es de tipo censal-documental y recupera metadatos de Scopus, correspondientes a 5654 investigaciones relacionadas con este problema de salud, durante el período 1961-2020. El procesamiento explora las principales características bibliométricas de los documentos publicados, el ritmo de crecimiento, la paternidad de las obras, el impacto por índice de citas, así como las redes de colaboración y la estructura que sigue el flujo del conocimiento. Se observa un despegue notable de la producción científica desde inicios de los años 90 del siglo pasado, coincidiendo con el desarrollo de investigaciones afines en el campo de la genética. También se constata un predominio en el estudio de los tipos SCA1, SCA2, SCA3, SCA6, y SCA17, donde los cuatro primeros corresponden a las ataxias de mayor prevalencia a escala mundial. El corpus documental refleja la consolidación de grupos de investigación relativamente estables, encabezados por líderes científicos y caracterizados por la ampliación sostenida de la colaboración internacional y por el trabajo colectivo e interdisciplinario. También se aprecia la tendencia hacia el aumento del número de referencias dentro de cada documento. Los mayores volúmenes productivos se concentran en países desarrollados, junto a países en vías de desarrollo donde existen elevados niveles de prevalencia en esta enfermedad.


The objective of the present study was to characterize the scientific production related to the field of spinocerebellar ataxias, which constitute neurodegenerative diseases, manifested by progressive and disabling clinical conditions. The research is census-documentary type and recovers metadata from Scopus, corresponding to 5,654 investigations related to this health problem, during the period 1961-2020. The processing explores the main bibliometric characteristics of the published documents, the pace of growth, the authorship of the works, the impact by citation index, as well as the collaboration networks and the structure that follows the flow of knowledge. A notable takeoff in scientific production has been observed since the beginning of the 90s of the last century, coinciding with the development of related research in the field of genetics. There is also a predominance in the study of the types SCA1, SCA2, SCA3, SCA6, and SCA17, where the first four correspond to the most prevalent ataxias worldwide. The documentary corpus reflects the consolidation of relatively stable research groups, headed by scientific leaders and characterized by the sustained expansion of international collaboration and collective and interdisciplinary work. There is also a trend towards increasing the number of references within each document. The largest productive volumes are concentrated in developed countries, along with developing countries where there are high levels of prevalence of this disease.

7.
Chem Sci ; 14(43): 12160-12165, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969586

ABSTRACT

We demonstrate an atom-efficient and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use of pre-labeled 2H-reducing agents, and therefore vastly simplifies product cleanup. Notably, this strategy enables 2H, 15N, and an asymmetric centre to be introduced at a molecular site in a single step, with full selectivity, under benign conditions, and with near 100% atom economy. The method facilitates the preparation of amino acid isotopologues on a half-gram scale. These amino acids have wide applicability in the analytical life sciences, and in particular for NMR spectroscopic analysis of proteins. To demonstrate the benefits of the approach for enabling the workflow of protein NMR chemists, we prepared l-[α-2H,15N, ß-13C]-alanine and integrated it into a large (>400 kDa) heat-shock protein oligomer, which was subsequently analysable by methyl-TROSY techniques, revealing new structural information.

8.
ACS Pharmacol Transl Sci ; 6(11): 1651-1658, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37974623

ABSTRACT

The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys720) of the Krev interaction trapped 1 (KRIT1) protein. We show that the interaction of HNA with KRIT1 is highly specific, results in prolonged residence time of >8 h, and inhibits the Heart of glass 1 (HEG1)-KRIT1 protein-protein interaction (PPI). Screening of HNA derivatives identified analogs exhibiting similar binding modes as the parent fragment but faster target engagement and stronger inhibition activity. These results demonstrate that HNA is an efficient site-directing fragment with promise in developing HEG1-KRIT1 PPI inhibitors. Further, the aldimine chemistry, when coupled with templating effects that promote proximity, can produce a long-lasting reversible covalent modification of noncatalytic lysines.

9.
J Air Waste Manag Assoc ; 73(9): 705-721, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548613

ABSTRACT

The management of municipal solid waste (MSW) in cities is one of the most complex tasks facing local administrations. For this reason, waste management performance measurement structures are increasingly implemented at local and national levels. These performance structures usually contain strategic objectives and associated action plans, as well as key performance indicators (KPIs) for organizations investing their resources in action plans. This study presents the results of applying a methodology to find a quantitative-based prioritization of MSW action plans for the City Council of Castelló de la Plana in Spain. In doing so, cause-effect relationships between the KPIs have been identified by applying the principal component analysis technique, and from these relationships it was possible to identify those action plans which should be addressed first to manage public services more efficiently. This study can be useful as a tool for local administrations when addressing the actions included in their local waste plans as it can lead to financial savings.Implications: This paper introduces and implements a methodology that uses principal component analysis to analyze real data from waste management KPIs and provide municipal solid waste managers with a decision-making tool for prioritizing action plans. The methodology saves financial resources and time, as well as reinforcing the probability of reaching the meta values of the main performance system KPIs.

10.
Cell Rep ; 42(8): 112996, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37598341

ABSTRACT

Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , T-Lymphocytes, Regulatory , Mice , Animals , Interleukin-2/metabolism , Receptors, Chemokine/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Receptors, Interleukin-2/metabolism , Signal Transduction , Forkhead Transcription Factors/metabolism
11.
Nutrients ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513626

ABSTRACT

The WHO identifies high BMI, high blood pressure, and high fasting plasma glucose as chronic disease risk factors, whereas physical fitness is identified as a protective behavioral factor. This study responds to the rising interest in assessing metabolic factors and physical activity within young populations of Mestizo, Tarahumara, and Mennonite from Chihuahua Mexico, due to its strong relationship with disease development and low well-being. A cross-sectional study was conducted with 201 teenagers from rural towns in Northern Mexico, and relationships between physical fitness and cardio-metabolic risk related to anthropometric, glycolipid, and vascular function factors were assessed. ANOVA-tested differences among ethnic groups using physical fitness as a grouping variable and measures of cardio-metabolic risks were used as dependent variables. A stepwise regression analysis allowed us to identify the best predictors for physical fitness. Clinical risk factors were analyzed by ethnic group and sex. No differences were found among ethnic groups in physical fitness and cardio-metabolic health risks; sex differentiated higher health risks related to behavioral factors, since young women showed lower physical fitness across ethnicities. Clinically, the Mestizo sample showed higher numbers of individuals with one risk factor. Mennonites showed a high frequency of anthropometric and fitness health risks with low glycolipid and vascular risks. Tarahumara had fewer risk factors as compared with both Mestizo and Mennonite. Rural populations are harder to reach, both for health assessment and intervention; health professionals must work close to local community organizations to gain access.


Subject(s)
Hypertension , Physical Fitness , Humans , Adolescent , Female , Mexico , Cross-Sectional Studies , Glycolipids
12.
BMC Genomics ; 24(1): 351, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365500

ABSTRACT

BACKGROUND: The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS: Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS: The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ).


Subject(s)
Brain , Gene Expression Regulation, Developmental , Transcription, Genetic , Sequence Analysis, RNA , Brain/embryology , Brain/metabolism , Animals , Mice , Enhancer Elements, Genetic , RNA/genetics
13.
Heliyon ; 9(4): e15481, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128307

ABSTRACT

Municipal solid waste (MSW) management is vital in achieving sustainable development goals. It is a complex activity embracing collection, transport, recycling, and disposal; and whose management depends on proper strategic decision-making. The use of decision support methods such as multi-criteria decision-making (MCDM) is widespread in MSW management. However, their application mainly focuses on selecting plant locations and the best technologies for waste treatment. Despite the critical role played by transport in promoting sustainability, MCDM has seldom been applied for the selection of sustainable transport alternatives in the field of MSW management. There are a few MCDM studies about choosing waste collection vehicles, but none that include the most recent green vehicles among the options or consider feasible future scenarios. In this article, different engine technologies for collection trucks (diesel, compressed natural gas (CNG), hybrid CNG-electric, electric, and hydrogen) are evaluated under sustainability criteria in a Spanish city by applying the stratified best and worst method (SBWM). This method enables considering the uncertainty associated with future events to establish various feasible scenarios. The results show that the best-valued options are electric and diesel trucks, in that order, followed by CNG and hybrid CNG-electric, and with hydrogen-powered trucks coming last. The SBWM has proven helpful in defining a comprehensive framework for selecting the most suitable engine technology to support long-term MSW collection. Considering sustainability among the criteria and feasible future scenarios in waste management collection decision-making provides more comprehensive and conclusive results that help managers and policymakers make better informed and more reliable decisions.

14.
Transl Stroke Res ; 14(4): 513-529, 2023 08.
Article in English | MEDLINE | ID: mdl-35715588

ABSTRACT

Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.


Subject(s)
Circulating MicroRNA , Hemangioma, Cavernous, Central Nervous System , MicroRNAs , Humans , Mice , Animals , Bayes Theorem , Hemangioma, Cavernous, Central Nervous System/genetics , KRIT1 Protein/genetics , MicroRNAs/genetics
15.
Materials (Basel) ; 15(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500122

ABSTRACT

In this study, the production of a mortar was proposed in which plastic waste replaced sand by 0%, 50%, and 100% in order to create a sustainable alternative for construction. The performance of the mortars was tested with two types of activators, one with NaOH, as a simple activator, and the other with NaOH and Na2SiO3, as a compound activator. The effects of the LDPE plastic bag waste and the activators on compressive strength, porosity, microstructure analysis, and efflorescence formation were correlated and discussed. The results showed that the replacement of sand with plastic waste at 50% and 100% proportionally reduced the compressive strength due to the increase in porosity caused by the waste, especially in the group of mortars with the simple activator, and included the formation of efflorescence. On the other hand, the compound activator increased the packing of the particles in the mortar, as observed in the images of the microstructure. This reduced porosity inhibited efflorescence and resulted in higher resistances that reached a maximum value of 22.68 MPa at 28 days in the group of 50% mortars with the compound activator. Therefore, the study showed that there is potential for the replacement of sand with plastic waste for the production of mortars, which can be considered a more sustainable building material.

16.
FASEB J ; 36(12): e22629, 2022 12.
Article in English | MEDLINE | ID: mdl-36349990

ABSTRACT

ß1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active ß1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of ß1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting ß1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Humans , Mice , Hemangioma, Cavernous, Central Nervous System/metabolism , Integrin beta1/metabolism , Antibodies, Monoclonal/metabolism , Integrins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism
17.
Circ Res ; 131(11): 909-925, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36285625

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS: We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS: Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS: Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/pathology , Endothelial Cells/metabolism , Neuroinflammatory Diseases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Proto-Oncogene Proteins/genetics , Inflammation/genetics , Inflammation/pathology , Caspases , RNA
18.
iScience ; 25(8): 104803, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35992071

ABSTRACT

Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.

19.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35942939

ABSTRACT

We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas, where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.


Subject(s)
Autism Spectrum Disorder , Enhancer Elements, Genetic , Animals , Autism Spectrum Disorder/genetics , Gene Expression Regulation, Developmental , Mice , Neurogenesis/genetics , Transcription Factors/metabolism
20.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012583

ABSTRACT

The European mink (Mustela lutreola) is one of Europe's most endangered species, and it is on the brink of extinction in the Iberian Peninsula. The species' precarious situation requires the application of new ex situ conservation methodologies that complement the existing ex situ and in situ conservation measures. Here, we report for the first time the establishment of a biobank for European mink mesenchymal stem cells (emMSC) and oocytes from specimens found dead in the Iberian Peninsula, either free or in captivity. New emMSC lines were isolated from different tissues: bone marrow (emBM-MSC), oral mucosa (emOM-MSc), dermal skin (emDS-MSC), oviduct (emO-MSc), endometrium (emE-MSC), testicular (emT-MSC), and adipose tissue from two different adipose depots: subcutaneous (emSCA-MSC) and ovarian (emOA-MSC). All eight emMSC lines showed plastic adhesion, a detectable expression of characteristic markers of MSCs, and, when cultured under osteogenic and adipogenic conditions, differentiation capacity to these lineages. Additionally, we were able to keep 227 Cumulus-oocyte complexes (COCs) in the biobank, 97 of which are grade I or II. The European mink MSC and oocyte biobank will allow for the conservation of the species' genetic variability, the application of assisted reproduction techniques, and the development of in vitro models for studying the molecular mechanisms of infectious diseases that threaten the species' precarious situation.


Subject(s)
Mesenchymal Stem Cells , Mink , Animals , Cell Differentiation , Cells, Cultured , Endangered Species , Female , Mink/genetics , Oocytes , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...