Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612887

ABSTRACT

Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.


Subject(s)
Calcium , Neural Stem Cells , Calcium, Dietary , Cell Differentiation , Cell Proliferation
2.
PLoS One ; 19(2): e0297900, 2024.
Article in English | MEDLINE | ID: mdl-38324577

ABSTRACT

Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.


Subject(s)
Kefir , Lactobacillales , Probiotics , Animals , Rats , Kefir/microbiology , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Staphylococcus aureus/genetics , Lactobacillaceae/genetics , Probiotics/chemistry , Lactobacillales/genetics
3.
Mol Cell Endocrinol ; 579: 112088, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37832930

ABSTRACT

Calcitriol and transforming growth factor beta 1 (TGF-ß1) are unrelated molecules that regulate biological processes according to the genetic target, cell type, and context. Several studies have shown independent effects of calcitriol and TGF-ßs on the placenta, but there is no information regarding the impact of their combination on these cells. Therefore, this study analyzed the effects of calcitriol, TGF-ß1, and their combination in primary cultures of human trophoblast cells using a whole genome expression microarray. Data analysis revealed a set of differentially expressed genes induced by each treatment. Enrichment pathway analysis identified modulatory effects of calcitriol on genes related to metabolic processes such as vitamin D, steroid, and fat-soluble vitamins as well as antimicrobial and immune responses. In relation to TGF-ß1, the analysis showed a few differentially expressed genes that were mainly associated with the neutrophil immune response. Lastly, the analysis revealed that the combination of calcitriol and TGF-ß1 up-regulated genes involving both immunologic processes and the biosynthesis of unsaturated fatty acids, eicosanoids, and lipoxins, among others. In contrast, pathways down-regulated by the combination were mostly associated with the catabolic process of acylglycerols and peptides, PPAR signaling pathway, cellular response to low-density lipoprotein stimulus, renin angiotensin system and digestion, mobilization and transport of lipids. Consistent with these results, the combined treatment on human trophoblast cells induced the accumulation of intracellular neutral lipid droplets and stimulated both gene and protein expression of 15-hydroxyprostaglandin dehydrogenase. In conclusion, the results revealed that differentially expressed genes induced by the combination modified the transcriptional landscape compared to each treatment alone, mainly altering the storage, activity and metabolism of lipids, which might have an impact on placental development.


Subject(s)
Calcitriol , Transforming Growth Factor beta1 , Humans , Female , Pregnancy , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Calcitriol/pharmacology , Calcitriol/metabolism , Placenta/metabolism , Transforming Growth Factor beta/metabolism , Trophoblasts/metabolism
4.
R Soc Open Sci ; 10(11): 231209, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920568

ABSTRACT

In Saccharomyces cerevisiae, the transcriptional repressor Nrg1 (Negative Regulator of Glucose-repressed genes) and the ß-Zip transcription factor Rtg3 (ReTroGrade regulation) mediate glucose repression and signalling from the mitochondria to the nucleus, respectively. Here, we show a novel function of these two proteins, in which alanine promotes the formation of a chimeric Nrg1/Rtg3 regulator that represses the ALT2 gene (encoding an alanine transaminase paralog of unknown function). An NRG1/NRG2 paralogous pair, resulting from a post-wide genome small-scale duplication event, is present in the Saccharomyces genus. Neo-functionalization of only one paralog resulted in the ability of Nrg1 to interact with Rtg3. Both nrg1Δ and rtg3Δ single mutant strains were unable to use ethanol and showed a typical petite (small) phenotype on glucose. Neither of the wild-type genes complemented the petite phenotype, suggesting irreversible mitochondrial DNA damage in these mutants. Neither nrg1Δ nor rtg3Δ mutant strains expressed genes encoded by any of the five polycistronic units transcribed from mitochondrial DNA in S. cerevisiae. This, and the direct measurement of the mitochondrial DNA gene complement, confirmed that irreversible damage of the mitochondrial DNA occurred in both mutant strains, which is consistent with the essential role of the chimeric Nrg1/Rtg3 regulator in mitochondrial DNA maintenance.

5.
Biol Cell ; 115(3): e2200046, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36571578

ABSTRACT

BACKGROUND INFORMATION: Autophagy is a conserved process that functions as a cytoprotective mechanism; it may function as a cell death process called programmed cell death type II. There is considerable evidence for the presence of autophagic cell death during oocyte elimination in prepubertal rats. However, the mechanisms involved in this process have not been deciphered. RESULTS: Our observations revealed autophagic cell death in oocytes with increased labeling of the autophagic proteins Beclin 1, light chain 3 A (LC3 A), and lysosomal-associated membrane protein 1 (Lamp1). Furthermore, mTOR and phosphorylated (p)-mTOR (S2448) proteins were significantly decreased in oocytes with increased levels of autophagic proteins, indicating autophagic activation. Moreover, phosphorylated protein kinase B (p-AKT) was not expressed by oocytes, but mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling was observed. Additionally, selective and elevated mitochondrial degradation was identified in altered oocytes. CONCLUSIONS: All these results suggest that mTOR downregulation, which promotes autophagy, could be mediated by low energy levels and sustained starvation involving the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and MAPK/ERK pathways. SIGNIFICANCE: In this work, we analyzed the manner in which autophagy is carried out in oocytes undergoing autophagic cell death by studying the behavior of proteins involved in different steps of the autophagic pathway.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Female , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Autophagy
6.
Metabolites ; 12(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36557220

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder of unknown etiology. Hyperandrogenism (HA) is the main diagnostic criteria for PCOS, in addition to being a risk factor for developing several disorders throughout the patient's life, including pregnancy. However, the impact on offspring is little known. Therefore, the aim of this work was to evaluate the effect of maternal HA on glucose metabolism and hepatic lipid accumulation in adult offspring. We used Balb/c mice treated with dehydroepiandrosterone (DHEA) for 20 consecutive days. The ovary of DHEA-treated mice showed hemorrhagic bodies, an increased number of atretic follicles, and greater expression of genes related to meiotic cell cycle and DNA repair. The DHEA offspring (O-DHEA) had low birth weight, and some pups showed malformations. However, O-DHEA individuals gained weight rapidly, and the differences between them and the control group became significantly greater in adulthood. Moreover, O-DHEA presented higher serum glucose after a 6 h fast and a larger area under glucose, insulin, and pyruvate tolerance test curves. Oil Red O staining showed a more significant accumulation of fat in the liver but no changes in serum cholesterol and triacylglycerol levels. In summary, our results show that HA, induced by DHEA, affects gene expression in oocyte, which in turn generates defects in embryonic development, insulin resistance, and alteration in hepatic gluconeogenesis and lipid metabolism in O-DHEA, thereby increasing the risk of developing metabolic diseases.

7.
J Fungi (Basel) ; 8(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36135695

ABSTRACT

The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine-serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.

8.
Microorganisms ; 10(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35456844

ABSTRACT

Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.

9.
Gynecol Endocrinol ; 38(1): 2-9, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34787028

ABSTRACT

Polycystic ovary syndrome (PCOS) is a disease whose diagnosis is based on the detection of hyperandrogenism (HA) and ovulatory dysfunction. Women with PCOS frequently develop insulin resistance (IR), which generates a metabolic condition that involves a decrease in the action of insulin at the cellular level and is linked to compensatory hyperinsulinemia (HI). In PCOS, the ovary remains sensitive to the action of insulin. Additionally, it has been observed that the main effect of insulin in the ovary is the stimulation of androgen synthesis, resulting in HA, one of the fundamental characteristics of the PCOS. In this sense, the excess of androgens favors the development of IR, thus perpetuating the cycle of IR-HI-HA, and therefore PCOS. Moreover, mitochondrial dysfunction is present in PCOS patients and is a common feature in both IR and HA. This review places electron transfer as a key element in HA and IR development, with emphasis on the relationship between androgen biosynthesis and mitochondrial function. Indeed, metformin has been involved in repair mitochondrial dysfunction, decrease of oxidative stress, reduction of androgens levels and the enhancing of insulin sensitivity. Therefore, we propose that treatment with metformin could decrease HI and consequently HA, restoring, at least in part, the metabolic and hormonal disorders of PCOS.


Subject(s)
Feedback, Physiological/physiology , Hyperandrogenism/physiopathology , Insulin Resistance/physiology , Polycystic Ovary Syndrome/physiopathology , Androgens/biosynthesis , Electron Transport/physiology , Female , Humans , Hyperandrogenism/drug therapy , Hyperinsulinism/drug therapy , Insulin/physiology , Metformin/therapeutic use , Mitochondria/drug effects , Mitochondria/physiology , Ovary/metabolism
10.
Histol Histopathol ; 36(2): 195-205, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33331648

ABSTRACT

It was almost 150 years ago that Golgi revolutionised histology with silver-based stains. Major advances in knowledge of the nervous system became possible because of silver impregnations. Silver staining combined with classical histological staining, cytochemistry methods, and electron microscopy is useful for studying mechanisms and components at subcellular, cellular, and tissue levels. Despite the advantages of silver staining, its use has decreased over time. The aim of this work was to use argentic staining to study the cerebellar effects of controversial prenatal glucocorticoid (GC) therapy. At postnatal day 12 (P12), the cerebellum of corticosterone (CC)-treated rats impregnated with AgNOR staining exhibited diminished thickness of the external granule layer (EGL) and irregular Purkinje cell arrangement. There was a greater number of nucleoli and nucleolar organiser regions (NORs) in 24% of Purkinje cells. Cerebellar granule neuron progenitor (CGNP) cells of the EGL showed a decrease in cellular density (confirmed by proliferating cell nuclear antigen [PCNA] immunolocalization) and NORs. At postnatal day 6 (P6), the Golgi-Kopsch technique allowed us to observe disturbances in the distribution pattern of CGNP cells (during proliferation, migration, and differentiation) and premature growth of the Bergmann glia. Our findings reveal disturbances in the cerebellar development program with early cellular and tissue changes.


Subject(s)
Adrenal Cortex Hormones/metabolism , Cerebellum/drug effects , Cerebellum/metabolism , Glucocorticoids/pharmacology , Animals , Cell Differentiation , Cell Movement , Cell Nucleolus/metabolism , Cell Proliferation , Female , Humans , Neurons/pathology , Nucleolus Organizer Region/metabolism , Pregnancy , Pregnancy, Animal , Prenatal Exposure Delayed Effects , Proliferating Cell Nuclear Antigen/biosynthesis , Purkinje Cells/metabolism , Rats , Rats, Wistar , Silver Staining
11.
Front Chem ; 8: 433, 2020.
Article in English | MEDLINE | ID: mdl-32656177

ABSTRACT

The appearance of drug-resistant strains of Mycobacterium tuberculosis and the dramatic increase in infection rates worldwide evidences the urgency of developing new and effective compounds for treating tuberculosis. Benzimidazoles represent one possible source of new compounds given that antimycobacterial activity has already been documented for some derivatives, such as those bearing electron-withdrawing groups. The aim of this study was to synthesize two series of benzimidazoles, di- and trisubstituted derivatives, and evaluate their antimycobacterial activity. Accordingly, 5a and 5b were synthesized from hydroxymoyl halides 3a and 3b, and nitro-substituted o-phenylenediamine 4. Compound 11 was synthesized from an aromatic nitro compound, 4-chloro-1,2-phenylenediamine 9, mixed with 3-nitrobenzaldehyde 10, and bentonite clay. Although the synthesis of 11 has already been reported, its antimycobacterial activity is herein examined for the first time. 1,2,5-trisubstituted benzimidazoles 7a, 7b, and 12 were obtained from N-alkylation of 5a, 5b, and 11. All benzimidazole derivatives were characterized by FT-IR, NMR, and HR-MS, and then screened for their in vitro antimycobacterial effect against the M. tuberculosis H37Rv strain. The N-alkylated molecules (7a, 7b, and 12) generated very limited in vitro inhibition of mycobacterial growth. The benzimidazoles (5a, 5b, and 11) showed in vitro potency against mycobacteria, reflected in minimal inhibitory concentration (MIC) values in the range of 6.25-25 µg/mL. Consequently, only the 2,5-disubstituted benzimidazoles were assessed for biological activity on mouse macrophages infected with M. tuberculosis. A good effect was found for the three compounds. The cytotoxicity assay revealed very low toxicity for all the test compounds against the macrophage cell line. According to the docking study, 2,5-disubstituted benzimidazoles exhibit high affinity for an interdomain cleft that plays a key role in the GTP-dependent polymerization of the filamentous temperature-sensitive Z (FtsZ) protein. The ability of different benzimidazoles to impede FtsZ polymerization is reportedly related to their antimycobacterial activity. On the other hand, the 1,2,5-trisubstituted benzimidazoles docked to the N-terminal of the protein, close to the GTP binding domain, and did not show strong binding energies. Overall, 5a, 5b, and 11 proved to be good candidates for in vivo testing to determine their potential for treating tuberculosis.

12.
Behav Brain Res ; 379: 112313, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31715211

ABSTRACT

It has been well established that the striatal dopaminergic system is compromised with aging, namely D2 receptor function. Also well documented is the age related decline of the neurohormone, melatonin, in both humans and nonhuman animals. What has not been well studied is the possible interaction between the D2 receptor system and the age related decline in melatonin with its unmistakable pattern of synthesis and release exclusively during the dark phase. We tested the effect of the D2 antagonist, haloperidol (1.0 mg/kg ip), in adolescent (2 mo old) and adult rats (10 mo old) in the light (ZT3) and dark phases (ZT 15) in rats kept in a 12 L/12D cycle and the effect of exogenous melatonin (15 mg/kg ip/day x 4 days for a total of 60 mg/kg) on D2 antagonism. Using the bar test, measuring the extrapyramidal side-effect of hypokinesia, we report haloperidol to work differentially depending on both age and phase. Adult rats experienced the effect of the D2 antagonist in both the light and dark phases, while younger rats did not show hypokinetic affects in the dark. By manipulated lighting, we were able to restore the effect of haloperidol in younger rats in the dark phase. We also found ameliorating effects of melatonin lessening time on the bar after treatment with haloperidol, however, this effect was only found in older rats. These data demonstrate the importance of the light/dark cycle and age in the susceptibility of extrapyramidal effects with use of drugs that target D2 receptor function.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Depressants/pharmacology , Dopamine D2 Receptor Antagonists/pharmacology , Haloperidol/pharmacology , Hypokinesia/chemically induced , Melatonin/pharmacology , Photoperiod , Age Factors , Animals , Central Nervous System Depressants/administration & dosage , Disease Models, Animal , Dopamine D2 Receptor Antagonists/administration & dosage , Haloperidol/administration & dosage , Melatonin/administration & dosage , Rats , Rats, Sprague-Dawley
13.
Neurochem Int ; 131: 104565, 2019 12.
Article in English | MEDLINE | ID: mdl-31586591

ABSTRACT

Astrocytes take up glucose via the 45 kDa isoform of the Glucose Transporter 1 (GLUT-1), and in this work we have investigated whether histamine regulates GLUT-1 expression in rat cerebro-cortical astrocytes in primary culture. Cultured astrocytes expressed histamine H1 and H3 receptors (H1Rs and H3Rs) as evaluated by radioligand binding. Receptor functionality was confirmed by the increase in the intracellular concentration of Ca2+ (H1R) and the inhibition of forskolin-induced cAMP accumulation (H3R). Quantitative RT-PCR showed that histamine and selective H1R and H3R agonists (1 h incubation) significantly increased GLUT-1 mRNA to 153 ±â€¯7, 163 ±â€¯2 and 168 ±â€¯13% of control values, respectively. In immunoblot assays, incubation (3 h) with histamine or H1R and H3R agonists increased GLUT-1 protein levels to 224 ±â€¯12, 305 ±â€¯11 and 193 ±â€¯13% of control values, respectively, an action confirmed by inmunocytochemistry. The effects of H1R and H3R agonists were blocked by the selective antagonists mepyramine (H1R) and clobenpropit (H3R). The pharmacological inhibition of protein kinase C (PKC) prevented the increase in GLUT-1 protein induced by either H1R or H3R activation. Furthermore, histamine increased ERK-1/2 phosphorylation, and the effect of H1R and H3R activation on GLUT-1 protein levels was reduced or prevented, respectively, by MEK-1/2 inhibition. These results indicate that by activating H1Rs and H3Rs histamine regulates the expression of GLUT-1 by astrocytes. The effect appears to involve the phospholipase C (PLC) → diacylglycerol (DAG)/Ca2+→ PKC and PLC → DAG/Ca2+ → PKC → MAPK pathways.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/metabolism , Glucose Transporter Type 1/biosynthesis , Histamine Agonists/pharmacology , Animals , Animals, Newborn , Calcium/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cyclic AMP/metabolism , Histamine/metabolism , Immunohistochemistry , MAP Kinase Signaling System/drug effects , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Wistar , Receptors, Histamine H1/drug effects , Receptors, Histamine H1/metabolism , Receptors, Histamine H3/drug effects , Receptors, Histamine H3/metabolism
14.
Exp Cell Res ; 383(2): 111587, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31454492

ABSTRACT

A typical nucleolus structure is shaped by three components. A meshwork of fine fibers forming the fibrillar center (FC) is surrounded by densely packed fibers forming the dense fibrillar component (DFC). Meanwhile, wrapping the FC and DFC is the granular component (GC). During the mitotic prophase, the nucleolus undergoes disassembling of its components. On the contrary, throughout the first meiotic prophase that occurs in the cells of the germ line, small nucleoli are assembled into one nucleolus by the end of the prophase. These nucleoli are transcriptionally active, suggesting that they are fully functional. Electron microscopy analysis has suggested that these nucleoli display their three main components but a typical organization has not been observed. Here, by immunolabeling and electron microscopy, we show that the nucleolus has its three main components. The GC is interlaced with the DFC and is not as well defined as previously thought during leptotene and zygotene stage.


Subject(s)
Cell Nucleolus/ultrastructure , Prophase/physiology , Spermatocytes/cytology , Spermatocytes/ultrastructure , Animals , Cell Nucleolus/physiology , Male , Meiosis/physiology , Microscopy, Electron , Rats , Synaptonemal Complex/ultrastructure , Testis/cytology , Testis/ultrastructure
15.
Anat Rec (Hoboken) ; 302(11): 2082-2092, 2019 11.
Article in English | MEDLINE | ID: mdl-31168949

ABSTRACT

Apoptosis is a type of cell death responsible for maintaining tissue homeostasis that can occur in male gonads. The morphological and biochemical characteristics of apoptosis include cellular contraction, caspase activation, and DNA fragmentation. Dynamic processes of cell renewal and differentiation occur inside the seminiferous tubules, which are regulated by mitosis and meiosis, respectively. During meiosis, recombination is caused by assembly of the synaptonemal complex, which involves the participation of constitutive proteins, such as synaptonemal complex protein-3 (SYCP3). The present study evaluated germinal cell death in immature male rats and the distribution of the SYCP3 protein. Our results indicate that as germinal cells progress to the second meiotic stage, significant numbers of them are eliminated by apoptosis. We determined that the SYCP3 protein is not always incorporated into the structure of the synaptonemal complex but rather forms a nuclear cumulus near the inner nuclear membrane, causing many of these cells to undergo apoptosis. We propose that both the excess of the SYCP3 protein and its accumulation during the first meiotic division could contribute to the cell death of primary spermatocytes during the first spermatogenic wave in prepubertal Wistar rats. Anat Rec, 302:2082-2092, 2019. © 2019 American Association for Anatomy.


Subject(s)
Apoptosis , DNA-Binding Proteins/metabolism , Spermatocytes/metabolism , Spermatocytes/pathology , Spermatogenesis , Animals , Immunohistochemistry , Male , Meiosis , Rats , Rats, Wistar
16.
Article in English | MEDLINE | ID: mdl-31108178

ABSTRACT

We have investigated the effect of the local activation of histamine H3 receptors (H3Rs) in the rat prefrontal cortex (PFCx) on the impairment of pre-pulse inhibition (PPI) of the startle response induced by the systemic administration of MK-801, antagonist at glutamate N-Methyl-d-Aspartate (NMDA) receptors, and the possible functional interaction between H3Rs and MK-801 on PFCx dopaminergic transmission. Infusion of the H3R agonist RAMH (19.8 ng/1 µl) into the PFCx reduced or prevented the inhibition by MK-801 (0.15 mg/kg, ip) of PPI evoked by different auditory stimulus intensities (5, 10 and 15 dB), and the RAMH effect was blocked by the H3R antagonist/inverse agonist ciproxifan (30.6 ng/1 µl). MK-801 inhibited [3H]-dopamine uptake (-45.4 ±â€¯2.1%) and release (-32.8 ±â€¯2.6%) in PFCx synaptosomes or slices, respectively, and molecular modeling indicated that MK-801 binds to and blocks the rat and human dopamine transporters. However, H3R activation had no effect on the inhibitory action of MK-801 on dopamine uptake and release. In PFCx slices, MK-801 and the activation of H3Rs or dopamine D1 receptors (D1Rs) stimulated ERK-1/2 and Akt phosphorylation. The co-activation of D1Rs and H3Rs prevented ERK-1/2 and Akt phosphorylation, and H3R activation or D1R blockade prevented the effect of MK-801. In ex vivo experiments, the intracortical infusion of the D1R agonist SKF-81297 (37 ng/1 µl) or the H3R agonist RAMH increased Akt phosphorylation, prevented by D1R/H3R co-activation. These results indicate that MK-801 enhances dopaminergic transmission in the PFCx, and that H3R activation counteracts the post-synaptic actions of dopamine.


Subject(s)
Dizocilpine Maleate/pharmacology , Prepulse Inhibition/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Histamine H3/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Reflex, Startle/drug effects , Animals , Benzazepines/administration & dosage , Benzazepines/pharmacology , Dizocilpine Maleate/administration & dosage , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Histamine Agonists/administration & dosage , Histamine Agonists/pharmacology , Imidazoles/administration & dosage , Imidazoles/pharmacology , Male , Microinjections , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation , Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Tritium/metabolism
17.
Purinergic Signal ; 15(1): 85-93, 2019 03.
Article in English | MEDLINE | ID: mdl-30565027

ABSTRACT

We previously reported that the activation of histamine H3 receptors (H3Rs) selectively counteracts the facilitatory action of adenosine A2A receptors (A2ARs) on GABA release from rat globus pallidus (GP) isolated nerve terminals (synaptosomes). In this work, we examined the mechanisms likely to underlie this functional interaction. Three possibilities were explored: (a) changes in receptor affinity for agonists induced by physical A2AR/H3R interaction, (b) opposite actions of A2ARs and H3Rs on depolarization-induced Ca2+ entry, and (c) an A2AR/H3R interaction at the level of adenosine 3',5'-cyclic monophosphate (cAMP) formation. In GP synaptosomal membranes, H3R activation with immepip reduced A2AR affinity for the agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680) (Ki control 4.53 nM; + immepip 9.32 nM), whereas A2AR activation increased H3R affinity for immepip (Ki control 0.63 nM; + CGS-21680 0.26 nM). Neither A2AR activation nor H3R stimulation modified calcium entry through voltage-gated calcium channels in GP synaptosomes, as evaluated by microfluorometry. A2AR-mediated facilitation of depolarization-evoked [2,3-3H]-γ-aminobutyric acid ([3H]-GABA) release from GP synaptosomes (130.4 ± 3.6% of control values) was prevented by the PKA inhibitor H-89 and mimicked by the adenylyl cyclase activator forskolin or by 8-Bromo-cAMP, a membrane permeant cAMP analogue (169.5 ± 17.3 and 149.5 ± 14.5% of controls). H3R activation failed to reduce the facilitation of [3H]-GABA release induced by 8-Bromo-cAMP. In GP slices, A2AR activation stimulated cAMP accumulation (290% of basal) and this effect was reduced (- 75%) by H3R activation. These results indicate that in striato-pallidal nerve terminals, A2ARs and H3Rs interact at the level of cAMP formation to modulate PKA activity and thus GABA release.


Subject(s)
Globus Pallidus/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Histamine H3/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Evoked Potentials/physiology , Male , Rats , Rats, Wistar
18.
Neurochem Int ; 101: 38-47, 2016 12.
Article in English | MEDLINE | ID: mdl-27744004

ABSTRACT

The histamine H3 receptor (H3R) is abundantly expressed in the Central Nervous System where it regulates several functions pre and postsynaptically. H3Rs couple to Gαi/o proteins and trigger or modulate several intracellular signaling pathways, including the cAMP/PKA pathway and the opening of N- and P/Q-type voltage-gated Ca2+ channels. In transfected cells, activation of the human H3R of 445 amino acids (hH3R445) results in phospholipase C (PLC) stimulation and release of Ca2+ from intracellular stores. In this work we have studied whether H3R activation induces Ca2+ mobilization from intracellular stores in native systems, either isolated nerve terminals (synaptosomes) or neurons in primary culture. In rat striatal synaptosomes H3R activation induced inositol 1,4,5-trisphosphate (IP3) formation but failed to increase the intracellular calcium concentration ([Ca2+]i). In striatal primary cultures H3R activation resulted in IP3 formation and increased the [Ca2+]i in 18 out of 70 cells that responded with an elevation in the [Ca2+]i to membrane depolarization with KCl (100 mM) as evaluated by microfluorometry. Confocal microscopy studies corroborated the increase in [Ca2+]i induced by H3R activation in a fraction of those cells that were responsive to membrane depolarization. These results indicate that H3R activation stimulates the PLC/IP3/Ca2+ pathway but only in a subpopulation of striatal neurons.


Subject(s)
Calcium/metabolism , Corpus Striatum/metabolism , Neurons/metabolism , Receptors, Histamine H3/metabolism , Synaptosomes/metabolism , Animals , Cells, Cultured , Central Nervous System Stimulants/metabolism , Male , Rats, Wistar , Signal Transduction/physiology
19.
Dev Growth Differ ; 58(8): 651-663, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27684714

ABSTRACT

Follicular atresia, a common process present in all mammals, involves apoptotic and autophagic cell death. However, the participation of paraptosis, a type of caspase-independent cell death, during follicular atresia is unknown. This study found swollen endoplasmic reticulum in the granulosa cells of adult Wistar rats. Calnexin was used as a marker of the endoplasmic reticulum at the ultrastructural and optical levels. The cells with swelling of the endoplasmic reticulum were negative to the TUNEL assay and active caspase-3 immunodetection, indicating that this swelling is not part of any apoptotic or autophagic process. Additionally, immunodetection of the CHOP protein was used as a marker of endoplasmic reticulum stress, and this confirmed the presence of the paraptosis process. These data suggest that paraptosis-like cell death is associated with the death of granulosa cells during follicular atresia in adult Wistar rats.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Follicular Atresia/metabolism , Granulosa Cells/metabolism , Animals , Calnexin/metabolism , Caspase 3/metabolism , Cell Death , Female , Rats , Rats, Wistar , Transcription Factor CHOP
20.
Neurochem Res ; 41(9): 2415-24, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27350581

ABSTRACT

Desensitization is a major mechanism to regulate the functional response of G protein-coupled receptors. In this work we studied whether the human histamine H3 receptor of 445 amino acids (hH3R445) experiences heterologous desensitization mediated by PKC activation. Bioinformatic analysis indicated the presence of Serine and Threonine residues susceptible of PKC-mediated phosphorylation on the third intracellular loop and the carboxyl terminus of the hH3R445. In CHO-K1 cells stably transfected with the hH3R445 direct PKC activation by phorbol 12-myristate 13-acetate (TPA, 200 nM) abolished H3R-mediated inhibition of forskolin-stimulated cAMP accumulation. Activation of endogenous purinergic receptors by ATP (adenosine 5'-triphosphate, 10 µM) increased the free calcium intracellular concentration ([Ca(2+)]i) confirming their coupling to phospholipase C stimulation. Incubation with ATP also abolished H3R-mediated inhibition of forskolin-induced cAMP accumulation, and this effect was prevented by the PKC inhibitors Ro-31-8220 and Gö-6976. Pre-incubation with TPA or ATP reduced H3R-mediated stimulation of [(35)S]-GTPγS binding to membranes from CHO-K1-hH3R445 cells by 39.7 and 54.2 %, respectively, with no change in the agonist potency, and the effect was prevented by either Ro-31-8220 or Gö-6976. Exposure to ATP or TPA also resulted in the loss of cell surface H3Rs (-30.4 and -45.1 %) as evaluated by [(3)H]-NMHA binding to intact cells. These results indicate that the hH3R445 undergoes heterologous desensitization upon activation of receptors coupled to PKC stimulation.


Subject(s)
Protein Kinase C/metabolism , Receptors, Histamine H3/metabolism , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Animals , CHO Cells , Carbazoles/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Colforsin/pharmacology , Cricetulus/metabolism , Humans , Indoles/pharmacology , Phosphorylation/drug effects , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...