Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177050

ABSTRACT

We examined the effect of hydrogen on the growth of single-walled carbon nanotubes in the aerosol (a specific case of the floating catalyst) chemical vapor deposition process using ethylene as a carbon source and ferrocene as a precursor for a Fe-based catalyst. With a comprehensive set of physical methods (UV-vis-NIR and Raman spectroscopies, transmission electron microscopy, scanning electron microscopy, differential mobility analysis, and four-probe sheet resistance measurements), we showed hydrogen to inhibit ethylene pyrolysis extending the window of synthesis parameters. Moreover, the detailed study at different temperatures allowed us to distinguish three different regimes for the hydrogen effect: pyrolysis suppression at low concentrations (I) followed by surface cleaning/activation promotion (II), and surface blockage/nanotube etching (III) at the highest concentrations. We believe that such a detailed study will help to reveal the complex role of hydrogen and contribute toward the synthesis of single-walled carbon nanotubes with detailed characteristics.

2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047655

ABSTRACT

We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis.


Subject(s)
Graphite , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Graphite/chemistry
3.
J Phys Chem Lett ; 13(37): 8775-8782, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36103372

ABSTRACT

The films of single-walled carbon nanotubes (SWCNTs) are a promising material for flexible transparent electrodes, which performance depends not only on the properties of individual nanotubes but also, foremost, on bundling of individual nanotubes. This work investigates the impact of densification on optical and electronic properties of SWCNT bundles and fabricated films. Our ab initio analysis shows that the optimally densified bundles, consisting of a mixture of quasi-metallic and semiconducting SWCNTs, demonstrate quasi-metallic behavior and can be considered as an effective conducting medium. Our density functional theory calculations indicate the band curving and bandgap narrowing with the reduction of the distance between nanotubes inside bundles. Simulation results are consistent with the observed conductivity improvement and shift of the absorption peaks in SWCNT films densified in isopropyl alcohol. Therefore, not only individual nanotubes but also the bundles should be considered as building blocks for high-performance transparent conductive SWCNT-based films.

4.
Nanomaterials (Basel) ; 12(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36014734

ABSTRACT

Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.

SELECTION OF CITATIONS
SEARCH DETAIL
...