Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Microbiol ; 63(Pt 6): 884-891, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667769

ABSTRACT

Bacterial contamination of platelet concentrates (PCs) poses the highest transfusion-associated infectious risk, with Staphylococcus epidermidis being a predominant contaminant. Herein, the growth dynamics of 20 S. epidermidis strains in PCs and regular media were characterized. Strains were categorized as fast (short lag phase) or slow (long lag phase) growers in PCs. All strains were evaluated for the presence of the biofilm-associated icaAD genes by PCR, their capability to produce extracellular polysaccharide (slime) on Congo red agar plates and their ability to form surface-attached aggregates (biofilms) in glucose-supplemented trypticase soy broth (TSBg) using a crystal violet staining assay. A subset of four strains (two slow growers and two fast growers) was further examined for the ability for biofilm formation in PCs. Two of these strains carried the icAD genes, formed slime and produced biofilms in TSBg and PCs, while the other two strains, which did not carry icaAD, did not produce slime or form biofilms in TSBg. Although the two ica-negative slime-negative strains did not form biofilms in media, they displayed a biofilm-positive phenotype in PCs. Although all four strains formed biofilms in PCs, the two slow growers formed significantly more biofilms than the fast growers. Furthermore, growth experiments of the two ica-positive strains in plasma-conditioned platelet bags containing TSBg revealed that a slow grower isolate was more likely to escape culture-based screening than a fast grower strain. Therefore, this study provides novel evidence that links S. epidermidis biofilm formation with slow growth in PCs and suggests that slow-growing biofilm-positive S. epidermidis would be more likely to be missed with automate culture.


Subject(s)
Biofilms/growth & development , Blood Platelets/microbiology , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/physiology , Culture Media , Humans , Polysaccharides, Bacterial/metabolism
2.
Transfusion ; 50(11): 2344-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20553431

ABSTRACT

BACKGROUND: Platelet additive solutions (PASs) are an alternative to plasma for the storage of platelet concentrates (PCs). However, little is known about the effect of PAS on the growth dynamics of contaminant bacteria. Conversely, there have been no studies on the influence of bacteria on platelet (PLT) quality indicators when suspended in PAS. STUDY DESIGN AND METHODS: Eight buffy coats were pooled, split, and processed into PCs suspended in either plasma or PAS (SSP+, MacoPharma). PCs were inoculated with 10 and 100 colony-forming units (CFUs)/bag of either Serratia liquefaciens or Staphylococcus epidermidis. Bacterial growth was measured over 5 days by colony counts and bacterial biofilm formation was assayed by scanning electron microscopy and crystal violet staining. Concurrently, PLT markers were measured by an assay panel and flow cytometry. RESULTS: S. liquefaciens exhibited an apparent slower doubling time in plasma-suspended PCs (plasma-PCs). Biofilm formation by S. liquefaciens and S. epidermidis was significantly greater in PCs stored in plasma than in PAS. Although S. liquefaciens altered several PLT quality markers by Days 3 to 4 postinoculation in both PAS- and plasma-PCs, S. epidermidis contamination did not produce measurable PLT changes. CONCLUSIONS: S. liquefaciens can be detected more quickly in PAS-suspended PCs (PAS-PCs) than in plasma-PCs by colony counting. Furthermore, reduced biofilm formation by S. liquefaciens and S. epidermidis during storage in PAS-PCs increases bacteria availability for sampling detection. Culture-based detection remains the earliest indicator of bacterial presence in PAS-PCs, while changes of PLT quality can herald S. liquefaciens contamination when in excess of 10(8) CFUs/mL.


Subject(s)
Biofilms/drug effects , Blood Preservation/methods , Platelet Transfusion , Solutions/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcus epidermidis/growth & development , Acetates/pharmacology , Blood Buffy Coat/cytology , Blood Platelets/cytology , Chlorides/pharmacology , Citrates/pharmacology , Humans , Microbiological Techniques , Platelet-Rich Plasma , Serratia Infections/prevention & control , Serratia liquefaciens/growth & development , Sodium Citrate
SELECTION OF CITATIONS
SEARCH DETAIL
...