Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835788

ABSTRACT

N-doped (NrGO) and non-doped (rGO) graphenic materials are prepared by oxidation and further thermal treatment under ammonia and inert atmospheres, respectively, of natural graphites of different particle sizes. An extensive characterization of graphene materials points out that the physical properties of synthesized materials, as well as the nitrogen species introduced, depend on the particle size of the starting graphite, the reduction atmospheres, and the temperature conditions used during the exfoliation treatment. These findings indicate that it is possible to tailor properties of non-doped and N-doped reduced graphene oxide, such as the number of layers, surface area, and nitrogen content, by using a simple strategy based on selecting adequate graphite sizes and convenient experimental conditions during thermal exfoliation. Additionally, the graphenic materials are successfully applied as electrocatalysts for the demanding oxygen reduction reaction (ORR). Nitrogen doping together with the starting graphite of smaller particle size (NrGO325-4) resulted in a more efficient ORR electrocatalyst with more positive onset potentials (Eonset = 0.82 V versus RHE), superior diffusion-limiting current density (jL, 0.26V, 1600rpm = -4.05 mA cm-2), and selectivity to the direct four-electron pathway. Moreover, all NrGOm-4 show high tolerance to methanol poisoning in comparison with the state-of-the-art ORR electrocatalyst Pt/C and good stability.

2.
ChemSusChem ; 11(19): 3502-3511, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30039922

ABSTRACT

The condensation of ethanol to 1-butanol in the presence of different catalyst systems based on a Pd dehydrogenating/hydrogenating component and magnesium hydroxide-derived materials as basic ingredient was studied in a fixed-bed reactor. The metal was incorporated by wetness impregnation, and the resulting material was then reduced in situ with hydrogen at 573 K for 1 h before reaction. The bifunctional catalysts were tested in a fixed-bed reactor operated in the gas phase at 503 K and 50 bar with a stream of helium and ethanol. A bifunctional catalyst supported on a synthetic composite based on Mg and high surface area graphite (HSAG) was also studied. Improved catalytic performance in terms of selectivity towards 1-butanol and stability was shown by the Pd catalyst supported on the Mg-HSAG composite after thermal treatment in helium at 723 K, presumably due to the compromise between two parameters: adequate size of the Pd nanoparticles and the concentration of strongly basic sites. The results indicate that the optimal density of strongly basic sites is a key aspect in designing superior bifunctional heterogeneous catalyst systems for the condensation of ethanol to 1-butanol.

SELECTION OF CITATIONS
SEARCH DETAIL
...