Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(46): 17485-17493, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37943570

ABSTRACT

Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.


Subject(s)
Cysteine , Myoglobin , Animals , Horses , Myoglobin/chemistry , Cysteine/chemistry , Metmyoglobin/chemistry , Oxidation-Reduction , Muscles/metabolism
2.
Food Chem ; 408: 135165, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527926

ABSTRACT

The meat greening is an abnormal pigmentation related to microbiological contamination and lipid oxidation during storage. This color change results from sulfmyoglobin (SulfMb) production promoted by the reaction between metmyoglobin (MetMb), H2O2, and thiol compounds. Spectral studies on cooked meat suggested the production of SulfMb, probably due to the increment of free radicals during thermal treatment. Thus, we evaluated the involvement of free radicals and heme iron in the SulfMb production from horse MetMb and free cysteine (Cys) during thermal treatment. The results confirm that the reaction of SulfMb production at meat muscle pH (5.7-7.2) during heat treatment is a product of free radicals formed from Cys oxidation (SH) and reactive oxygen species (O2-, H2O2). This is catalyzed by the release of heme iron, thus promoting a consecutive reaction having MbFe(IV)O as a reaction intermediate.


Subject(s)
Cysteine , Hydrogen Peroxide , Animals , Horses , Hydrogen Peroxide/chemistry , Myoglobin/chemistry , Metmyoglobin/chemistry , Free Radicals , Oxidation-Reduction , Iron/chemistry , Heme
3.
Food Technol Biotechnol ; 57(1): 39-47, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31316275

ABSTRACT

Freezing conditions affect fish muscle protein functionality due to its denaturation/aggregation. However, jumbo squid (Dosidicus gigas) muscle protein functionality remains stable even after freezing, probably due to the presence of low-molecular-mass compounds (LMMC) as cryoprotectants. Thus, water-soluble LMMC (<1 kDa) fraction obtained from jumbo squid muscle was evaluated by Fourier transform infrared spectrometry. From its spectra, total carbohydrates, free monosaccharides, free amino acids and ammonium chloride were determined. Cryoprotectant capacity and protein cryostability conferred by LMMC were investigated by differential scanning calorimetry. Fraction partial characterization showed that the main components are free amino acids (18.84 mg/g), carbohydrates (67.1 µg/mg) such as monosaccharides (51.1 µg/mg of glucose, fucose and arabinose in total) and ammonium chloride (220.4 µg/mg). Arginine, sarcosine and taurine were the main amino acids in the fraction. LMMC, at the mass fraction present in jumbo squid muscle, lowered the water freezing point to -1.2 °C, inhibiting recrystallization at 0.66 °C. Significant myofibrillar protein stabilization by LMMC was observed after a freeze-thaw cycle compared to control (muscle after extraction of LMMC), proving the effectiveness on jumbo squid protein muscle cryo- stability. Osmolytes in LMMC fraction inhibited protein denaturation/aggregation and ice recrystallization, maintaining the muscle structure stable under freezing conditions. LMMC conferred protein cryostability even at the very low mass fraction in the muscle.

4.
Food Sci Biotechnol ; 28(3): 751-757, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31093432

ABSTRACT

Chemical properties of fish gelatins differ from those of conventional mammalian sources, representing an attractive technological alternative for the food industry. Ray filleting generates a considerable amount of skin waste that can be used as a collagen source for gelatin extraction. Thus, this research evaluated the HCl and CH3COOH effect, at 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2 M, on extraction yield, molecular weight distribution, and gel strength (GS) of whiptail stingray (Dasyatis brevis) skin gelatins. Results showed differences (P < 0.05) between acid type and concentration used. CH3COOH (0.15 M) gave the highest extraction yield (7.0% vs. 5.5% at 0.15 M HCl) and GS (653 ± 71 g vs. 619.5 ± 82 g at 0.2 M HCl). Gelatin electrophoretic profile from CH3COOH revealed α-/ß-components and high molecular weight (> 200 kDa) polymers. Ray gelatin GS was higher than commercial bovine gelatin, suggesting its possible use for technological food applications.

5.
Appl Biochem Biotechnol ; 171(3): 795-805, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897542

ABSTRACT

Solid wastes generated from the seafood industry represent an important environmental pollutant; therefore, utilization of those wastes for the development of processing biochemical tools could be an attractive and clean solution for the seafood industry. This study reports the immobilization of semi-purified acidic proteases from Monterey sardine stomachs onto chitin and chitosan materials extracted from shrimp head waste. Several supports (chitosan beads, chitosan flakes, and partially deacetylated flakes) were activated either with genipin or Na-tripolyphosphate and evaluated as a mean to immobilize acidic proteases. The protein load varied within the 67-91% range on different supports. The immobilization systems based on chitosan beads achieved the highest protein loads but showed the lowest retained catalytic activities. The best catalytic behavior was obtained using partially deacetylated chitin flakes activated either with genipin or Na-tripolyphosphate. According to results, the immobilization matrix structure, as well as acetylation degree of chitin-chitosan used, has considerable influence on the catalytic behavior of immobilized proteases. Partially deacetylated chitin flakes represent a suitable option as support for enzyme immobilization because its preparation requires fewer steps than other supports. Two abundant seafood by-products were used to obtain a catalytic system with enough proteolytic activity to be considered for biotechnological applications in diverse fields.


Subject(s)
Chitin/chemistry , Enzymes, Immobilized/chemistry , Industrial Waste , Penaeidae/chemistry , Peptide Hydrolases/chemistry , Animals , Biotechnology/methods , Chitosan/chemistry , Enzymes, Immobilized/isolation & purification , Fishes/metabolism , Iridoids/pharmacology , Penaeidae/drug effects , Peptide Hydrolases/isolation & purification , Polyphosphates/pharmacology
6.
Food Chem ; 141(2): 940-5, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23790871

ABSTRACT

Pterygoplichthys disjunctivus viscera trypsin was purified by fractionation with ammonium sulphate, gel filtration, affinity and ion exchange chromatography (DEAE-Sepharose). Trypsin molecular weight was approximately 27.5kDa according to SDS-PAGE, shown a single band in zymography. It exhibited maximal activity at pH 9.5 and 40°C, using N-benzoyl-dl-arginine-p-nitroanilide (BAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulphonyl fluoride (PMSF) (100%), N-α-p-tosyl-l-lysine chloromethyl ketone (TLCK) (85.4%), benzamidine (80.2%), and soybean trypsin inhibitor (75.6%) and partially inhibited by N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (10.3%), ethylendiaminetetraacetic acid (EDTA) (8.7%) and pepstatin A (1.2%). Enzyme activity was slightly affected by metal ions (Fe(2+)>Hg(2+)>Mn(2+)>K(+)>Mg(2+)>Li(+)>Cu(2+)). Trypsin activity decreased continuously as NaCl concentration increased (0-30%). Km and kcat values were 0.13mM and 1.46s(-1), respectively. Results suggest the enzyme have a potential application where room processing temperatures (25-35°C) or high salt (30%) concentration are needed, such as in fish sauce production.


Subject(s)
Catfishes/metabolism , Fish Proteins/chemistry , Fish Proteins/isolation & purification , Trypsin/chemistry , Trypsin/isolation & purification , Viscera/enzymology , Animals , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Viscera/chemistry
7.
Fish Physiol Biochem ; 39(2): 121-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22752357

ABSTRACT

Pterygoplichthys disjunctivus viscera chymotrypsin was purified by fractionation with ammonium sulfate (30-70 % saturation), gel filtration, affinity, and ion exchange chromatography. Chymotrypsin molecular weight was approximately 29 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), shown a single band in zymogram. Electrofocusing study suggested being an anionic enzyme (pI ≈ 3.9), exhibiting maximal activity at pH 9 and 50 °C, using Suc-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulfonyl fluoride (PMSF) (99 %), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) (94 %). Enzyme activity was affected by the following ions in decreasing order: Hg(2+), Fe(2+), Cu(2+), Li(1+), Mg(2+), K(1+), Mn(2+), while Ca(2+) had no effect. Chymotrypsin activity decreased continuously as NaCl concentration increased (from 0 to 30 %). K m and V max values were 0.72 ± 1.4 mM and 1.15 ± 0.06 µmol/min/mg of protein, respectively (SAAPNA as substrate). Results suggest the enzyme has a potential application where low processing temperatures are needed, such as in fish sauce production.


Subject(s)
Catfishes/metabolism , Chymotrypsin/isolation & purification , Viscera/chemistry , Animals , Chemical Fractionation , Chymotrypsin/metabolism , Electrophoresis, Polyacrylamide Gel/veterinary , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/metabolism , Mexico , Sodium Chloride/metabolism , Temperature
8.
Food Chem ; 109(4): 782-9, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-26049991

ABSTRACT

Pacific whiting (Merluccius productus) muscle was used to produce hydrolysates with 10%, 15% and 20% degree of hydrolysis (DH) using the commercial protease Alcalase(®) and were characterized at pH 4.0, 7.0 and 10 according their solubility, emulsifying and foaming properties. Protein recovered in soluble fractions increased proportionally with the hydrolytic process, yielded 48.6±1.9, 58.6±4.1 and 67.8±1.4 of total protein after 10%, 15% and 20% DH, respectively. Freeze-dried hydrolysates presented almost 100% solubility (p>0.05) at the different pHs evaluated. Emulsifying properties (EC, EAI and ESI) were not affected by DH as most samples showed similar (p>0.05) results. Higher EC (p⩽0.05) than sodium caseinate, used as control, were obtained at pH 4 for most hydrolysates. Hydrolysates showed very low foaming capacity not affected by pH; but foam stability was equal or even better (p>0.05) than bovine serum albumin (BSA), except at pH 4.0. Results suggest that hydrolysates from Pacific whiting muscle can be produced with similar or better functional properties than the food ingredients used as standards.

SELECTION OF CITATIONS
SEARCH DETAIL
...