Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37376239

ABSTRACT

The use of biopolymeric materials is restricted for some applications due to their deficient properties in comparison to synthetic polymers. Blending different biopolymers is an alternative approach to overcome these limitations. In this study, we developed new biopolymeric blend materials based on the entire biomasses of water kefir grains and yeast. Film-forming dispersions with varying ratios of water kefir to yeast (100/0, 75/25, 50/50 25/75 and 0/100) underwent ultrasonic homogenisation and thermal treatment, resulting in homogeneous dispersions with pseudoplastic behaviour and interaction between both biomasses. Films obtained by casting had a continuous microstructure without cracks or phase separation. Infrared spectroscopy revealed the interaction between the blend components, leading to a homogeneous matrix. As the water kefir content in the film increased, transparency, thermal stability, glass transition temperature and elongation at break also increased. The thermogravimetric analyses and the mechanical tests showed that the combination of water kefir and yeast biomasses resulted in stronger interpolymeric interactions compared to single biomass films. The ratio of the components did not drastically alter hydration and water transport. Our results revealed that blending water kefir grains and yeast biomasses enhanced thermal and mechanical properties. These studies provided evidence that the developed materials are suitable candidates for food packaging applications.

2.
Food Chem ; 372: 131346, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34818748

ABSTRACT

The symbiotic community of bacteria and yeast (SCOBY) of Kombucha beverage produces a floating film composed of bacterial cellulose, a distinctive biobased material. In this work, Kombucha fermentation was carried out in six different herbal infusions, where SCOBY was able to synthesise cellulosic films. Infusions of black and green tea, yerba mate, lavender, oregano and fennel added with sucrose (100 g/l) were used as culture media. In all cultures, film production resulted in a maximum after 21 days. Yield conversion, process productivity and antioxidant activity were quantified. Macroscopic and microscopic features of films were determined based on electronic microscopy, calorimetric and mechanical properties and hydration behaviour. Native films from yerba mate had a remarkable antioxidant activity of 93 ± 4% of radical inhibition due to plant polyphenols, which could prevent food oxidation. Results revealed that films retained natural bioactive substances preserving important physicochemical properties, essential for developing active materials.


Subject(s)
Kombucha Tea , Bacteria , Cellulose , Fermentation , Kombucha Tea/analysis , Tea
3.
Materials (Basel) ; 13(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168751

ABSTRACT

There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with high promising properties for the development of biodegradable materials, while milk and water kefir grains, composed by kefiran and dextran, respectively, produce films with very good optical and mechanical properties. The reasons for considering microbial cellulose as an attractive biobased material are the conformational structure and enhanced properties compared to plant cellulose. Kombucha tea, a probiotic fermented sparkling beverage, produces a floating membrane that has been identified as bacterial cellulose as a side stream during this fermentation. The results shown in this review demonstrated the good performance of microbial biomass to form new materials, with enhanced functional properties for different applications.

4.
3 Biotech ; 7(6): 380, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29109925

ABSTRACT

Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.

5.
Food Chem ; 208: 252-7, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27132847

ABSTRACT

Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity.


Subject(s)
Food Handling/methods , Fruit and Vegetable Juices/analysis , Pectins/metabolism , Polygalacturonase/metabolism , Sepharose/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Fruit/chemistry , Fruit/enzymology , Glyoxylates/chemistry , Hydrogen-Ion Concentration , Polygalacturonase/chemistry , Prunus domestica/chemistry , Prunus domestica/enzymology , Vitis/chemistry , Vitis/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...