Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(59): 35709-35717, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-35517122

ABSTRACT

This paper investigated the degradation of the pharmaceutical drug Valsartan (VS) using non-equilibrium atmospheric pressure plasma (NEAPP) with various operating conditions. The heterogeneous photocatalyst ZnO nanoparticles (NP's) were synthesized using a hydrothermal process. The morphology, chemical composition and structure of as-synthesized ZnO NPs were examined by Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Then, VS degradation was examined in three subsequent treatment conditions including plasma treatment alone, the combination of plasma with as-prepared ZnO NPs and various environments (air, oxygen and hydrogen peroxide) at fixed plasma operating potential and treatment time. The degradation efficiency of plasma-treated VS by various conditions was observed using UV-visible spectroscopy. Optical Emission Spectrometry (OES) was used to characterize the distribution and emission intensity of various reactive species (OH˙, N2-SPS and O) during the degradation processes which plays a vital role in the degradation of VS. The role of OH˙ and H2O2 during the degradation process was further examined by chemical dosimetry and spectroscopic techniques. Furthermore, pH, conductivity and TOC of the untreated and plasma-treated VS were also investigated. The results on the degradation of VS showed that plasma treatment combined with ZnO NP's has a significant effect on degradation of molecules of VS than degradation processes carried out by other experimental conditions due to the formation of higher concentrations of various reactive oxygen and nitrogen species during the degradation processes.

2.
Mater Sci Eng C Mater Biol Appl ; 94: 150-160, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423696

ABSTRACT

This work describes the development of antifouling functional coatings on the surface of low density polyethylene (LDPE) films by means of atmospheric pressure non-thermal plasma (APNTP) assisted copolymerization using a mixture of acrylic acid and poly (ethylene glycol). The aim of the study was to investigate the antifouling properties of the plasma copolymerized LDPE films and the same was carried out as a function of deposition time with fixed applied potential of 14 kV. In a second stage, the plasma copolymerized LDPE films were functionalized with chitosan (CHT) to further enhance its antifouling properties. The surface hydrophilicity, structural, topographical and chemistry of the plasma copolymerized LDPE films were examined by contact angle (CA), X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Coating stability was also studied in detail over a storage time of 15 days by storing in water and air. The antifouling properties of the plasma copolymerized LDPE films were examined via protein adsorption and platelet adhesion studies. CA study showed significant changes in surface wettability after the coating process. XPS and FTIR analysis proved the presence of a dense multifunctional coating and an efficient immobilization of CHT. Substantial amendments in surface topography were observed, positively enhancing the overall surface hydrophilicity. Finally, in-vitro analysis showed excellent antifouling behavior of the surface modified LDPE films.


Subject(s)
Biofouling , Chitosan/pharmacology , Plasma Gases/chemistry , Polyethylene/chemistry , Polymerization , Adsorption , Animals , Blood Proteins/metabolism , Coated Materials, Biocompatible/chemistry , Goats , Humans , Hydrophobic and Hydrophilic Interactions , Materials Testing , Photoelectron Spectroscopy , Platelet Adhesiveness , Spectroscopy, Fourier Transform Infrared , Temperature , Wettability , X-Ray Diffraction
3.
Mater Sci Eng C Mater Biol Appl ; 62: 908-18, 2016 May.
Article in English | MEDLINE | ID: mdl-26952498

ABSTRACT

The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability.


Subject(s)
Plasma Gases , Polypropylenes/chemistry , Titanium/chemistry , Animals , Argon/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Adhesion/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , NIH 3T3 Cells , Oxygen/chemistry , Photoelectron Spectroscopy , Staphylococcus aureus/drug effects , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...