Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199389

ABSTRACT

In this work, to fabricate a novel composite consisting of chitosan/poly-lactic acid doped with graphene oxide (CS/PLA-GO), composites were prepared via solution blending method to create various compositions of CS and PLA (90/10, 70/30 and 50/50CS/PLA-GO). Graphene oxide (GO) was added into a PLA solution prior to blending it with chitosan (CS). The surface morphology and structural properties of synthesized composites were characterized using FT-IR, SEM and XRD analysis. The performances of synthesized composites on thermal strength, mechanical strength, water absorption, and microbial activity were also evaluated through standard testing methods. The morphology of 70/30CS/PLA-GO became smoother with the addition of GO due to enhanced interfacial adhesion between CS, PLA and GO. The presence of GO has also improved the miscibility of CS and PLA and has superior properties compared to CS/PLA composites. Moreover, the addition of GO has boosted the thermal stability of the composite, with a significant enhancement of Td and Tg. The highest Td and Tg were accomplished at 389 °C and 76.88 °C, respectively, for the 70/30CS/PLA-GO composite in comparison to the CS and PLA that recorded Td at 272 °C and 325 °C and Tg at 61 °C and 60 °C, respectively. In addition, as reinforcement, GO provided a significant influence on the tensile strength of composites where the tensile modulus showed remarkable improvement compared to pure CS and CS/PLA composites. Furthermore, CS/PLA-GO composites showed excellent water-barrier properties. Among other compositions, 70/30CS/PLA revealed the greatest decrement in water absorption. From the antibacterial results, it was observed that 90/10CS/PLA-GO and 70/30CS/PLA-GO showed an inhibitory effect and had wide inhibition zones which were 8.0 and 8.5 mm, respectively, against bacteria Bacillus Subtillis B29.

2.
Polymers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671059

ABSTRACT

This paper proposes a novel idea to enhance the sensitivity and selectivity of surface plasmon resonance (SPR) optical sensor for detection of dengue virus type-2 envelope proteins (DENV-2 E-proteins) using polyamidoamine (PAMAM) dendrimer biopolymer-based nanocomposite thin film. For this purpose, two ranges of DENV-2 E-protein concentrations, i.e., 0.000008-0.0001 nM and 0.00008-0.005 nM were evaluated, and the lowest detectable concentration was achieved at 0.00008 nM. The incorporation of PAMAM dendrimer-based nanocomposite thin film with an SPR sensor exhibited a significant increase in sensitivity and binding affinity to a lower range DENV-2 E-protein concentrations. Moreover, the proposed sensor displayed good selectivity towards DENV-2 E-proteins and have an average recovery of 80-120%. The findings of this study demonstrated that PAMAM dendrimer-based nanocomposite thin film combined with SPR sensor is a promising diagnostic tool for sensitive and selective detection of DENV-2 E-proteins.

3.
Molecules ; 25(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182532

ABSTRACT

In this study, an optimized mesoporous sulfonated carbon (OMSC) catalyst derived from palm kernel shell biomass was developed using template carbonization and subsequent sulfonation under different temperatures and time conditions. The OMSC catalyst was characterized using acid-base titration, elemental analysis, XRD, Raman, FTIR, XPS, TPD-NH3, TGA-DTA, SEM, and N2 adsorption-desorption analysis to reveal its properties. Results proved that the OMSC catalyst is mesoporous and amorphous in structure with improved textural, acidic, and thermal properties. Both FTIR and XPS confirmed the presence of -SO3H, -OH, and -COOH functional groups on the surface of the catalyst. The OMSC catalyst was found to be efficient in catalyzing glycerol conversion to acetin via an acetylation reaction with acetic acid within a short period of 3 h. Response surface methodology (RSM), based on a two-level, three-factor, face-centered central composite design, was used to optimize the reaction conditions. The results showed that the optimized temperature, glycerol-to-acetic acid mole ratio, and catalyst load were 126 °C, 1:10.4, and 0.45 g, respectively. Under these optimum conditions, 97% glycerol conversion (GC) and selectivities of 4.9, 27.8, and 66.5% monoacetin (MA), diacetin (DA), and triacetin (TA), respectively, were achieved and found to be close to the predicted values. Statistical analysis showed that the regression model, as well as the model terms, were significant with the predicted R2 in reasonable agreement with the adjusted R2 (<0.2). The OMSC catalyst maintained excellent performance in GC for the five reaction cycles. The selectivity to TA, the most valuable product, was not stable until the fourth cycle, attributable to the leaching of the acid sites.


Subject(s)
Bacteriocins/chemistry , Carbon/chemistry , Glycerides/chemistry , Sulfur/chemistry , Triacetin/chemistry , Catalysis , Chemistry, Organic/methods , Glycerol/chemistry , Microscopy, Electron, Scanning , Models, Statistical , Regression Analysis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Temperature , Thermogravimetry , X-Ray Diffraction
4.
J Hazard Mater ; 125(1-3): 113-20, 2005 Oct 17.
Article in English | MEDLINE | ID: mdl-15996813

ABSTRACT

The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at approximately 28 degrees C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis.


Subject(s)
Coloring Agents/isolation & purification , Fluorescence , Titanium , Water Pollutants, Chemical/isolation & purification , Water Pollution, Chemical/prevention & control , Water/chemistry , Azo Compounds/isolation & purification , Hydrogen-Ion Concentration , Indigo Carmine/isolation & purification , Methylene Blue/isolation & purification , Photochemistry/instrumentation , Photochemistry/methods , Trypan Blue , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...