Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837376

ABSTRACT

Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.

2.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267697

ABSTRACT

There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...