Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cancer Cell ; 41(12): 2019-2037.e8, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37890493

ABSTRACT

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Prospective Studies , Gastric Mucosa/pathology , Genomics , Metaplasia/genetics , Precancerous Conditions/genetics
2.
Gut ; 72(9): 1651-1663, 2023 09.
Article in English | MEDLINE | ID: mdl-36918265

ABSTRACT

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.


Subject(s)
Stomach Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Nuclear Proteins/genetics , Epigenomics , Mutation , Tumor Microenvironment/genetics , DNA-Binding Proteins/genetics , Cell Cycle Proteins/genetics
3.
Gut ; 72(2): 226-241, 2023 02.
Article in English | MEDLINE | ID: mdl-35817555

ABSTRACT

OBJECTIVE: Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN: Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS: We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION: Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.


Subject(s)
Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Humans , Cisplatin/metabolism , Cisplatin/therapeutic use , Prospective Studies , Protein Kinases/genetics , Repressor Proteins , Retrospective Studies , Stomach Neoplasms/genetics
4.
Cancer Discov ; 12(3): 670-691, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34642171

ABSTRACT

Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2 and stage-wise accrual of cancer-associated fibroblast subpopulations marked by high INHBA and FAP coexpression. Single-cell comparisons between patient-derived organoids (PDO) and primary tumors highlighted inter- and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-sequencing cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra- and interpatient lineage states across distinct gastric cancer subtypes. SIGNIFICANCE: We profiled gastric malignancies at single-cell resolution and identified increased plasma cell proportions as a novel feature of diffuse-type tumors. We also uncovered distinct cancer-associated fibroblast subtypes with INHBA-FAP-high cell populations as predictors of poor clinical prognosis. Our findings highlight potential origins of deregulated cell states in the gastric tumor ecosystem. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Cancer-Associated Fibroblasts , Stomach Neoplasms , Cancer-Associated Fibroblasts/pathology , Ecosystem , Humans , Single-Cell Analysis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transcriptome , Tumor Microenvironment/genetics
5.
Gut ; 71(7): 1277-1288, 2022 07.
Article in English | MEDLINE | ID: mdl-34433583

ABSTRACT

OBJECTIVES: Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumour evolution and therapeutic response. We aimed to study the regulation of the tumour immune microenvironment through epigenetic alternate promoter use in gastric cancer and to expand our findings to other gastrointestinal tumours. DESIGN: Alternate promoter burden (APB) was quantified using a novel bioinformatic algorithm (proActiv) to infer promoter activity from short-read RNA sequencing and samples categorised into APBhigh, APBint and APBlow. Single-cell RNA sequencing was performed to analyse the intratumour immune microenvironment. A humanised mouse cancer in vivo model was used to explore dynamic temporal interactions between tumour kinetics, alternate promoter usage and the human immune system. Multiple cohorts of gastrointestinal tumours treated with immunotherapy were assessed for correlation between APB and treatment outcomes. RESULTS: APBhigh gastric cancer tumours expressed decreased levels of T-cell cytolytic activity and exhibited signatures of immune depletion. Single-cell RNAsequencing analysis confirmed distinct immunological populations and lower T-cell proportions in APBhigh tumours. Functional in vivo studies using 'humanised mice' harbouring an active human immune system revealed distinct temporal relationships between APB and tumour growth, with APBhigh tumours having almost no human T-cell infiltration. Analysis of immunotherapy-treated patients with GI cancer confirmed resistance of APBhigh tumours to immune checkpoint inhibition. APBhigh gastric cancer exhibited significantly poorer progression-free survival compared with APBlow (median 55 days vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032). CONCLUSION: These findings demonstrate an association between alternate promoter use and the tumour microenvironment, leading to immune evasion and immunotherapy resistance.


Subject(s)
Gastrointestinal Neoplasms , Stomach Neoplasms , Animals , Epigenesis, Genetic , Epigenomics , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/therapy , Tumor Microenvironment
6.
Genome Biol ; 22(1): 44, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33482911

ABSTRACT

BACKGROUND: Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. RESULTS: We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. CONCLUSIONS: Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.


Subject(s)
Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcriptome , Adaptor Proteins, Signal Transducing , Alternative Splicing , Cell Line, Tumor , Exons , Gene Expression Profiling , Genome , Humans , Open Reading Frames , Protein Isoforms , Sequence Analysis, RNA
7.
Cancer Cell ; 33(1): 137-150.e5, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29290541

ABSTRACT

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. We performed (epi)genomic profiling of 138 IMs from 148 cancer-free patients, recruited through a 10-year prospective study. Compared with GCs, IMs exhibit low mutational burdens, recurrent mutations in certain tumor suppressors (FBXW7) but not others (TP53, ARID1A), chromosome 8q amplification, and shortened telomeres. Sequencing identified more IM patients with active Helicobacter pylori infection compared with histopathology (11%-27%). Several IMs exhibited hypermethylation at DNA methylation valleys; however, IMs generally lack intragenic hypomethylation signatures of advanced malignancy. IM patients with shortened telomeres and chromosomal alterations were associated with subsequent dysplasia or GC; conversely patients exhibiting normal-like epigenomic patterns were associated with regression.


Subject(s)
Gastric Mucosa/pathology , Helicobacter Infections/genetics , Metaplasia/genetics , Precancerous Conditions/genetics , Stomach Neoplasms/etiology , Adult , Aged , DNA Methylation , Disease Progression , Epigenomics , Female , Gastric Mucosa/microbiology , Genomics , Helicobacter Infections/microbiology , Humans , Male , Metaplasia/microbiology , Middle Aged , Precancerous Conditions/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology
8.
Mol Oncol ; 11(2): 124-139, 2017 02.
Article in English | MEDLINE | ID: mdl-28145097

ABSTRACT

Intratumor heterogeneity (ITH) contributes to cancer progression and chemoresistance. We sought to comprehensively describe ITH of somatic mutations, copy number, and transcriptomic alterations involving clinically and biologically relevant gene pathways in colorectal cancer (CRC). We performed multiregion, high-depth (384× on average) sequencing of 799 cancer-associated genes in 24 spatially separated primary tumor and nonmalignant tissues from four treatment-naïve CRC patients. We then used ultra-deep sequencing (17 075× on average) to accurately verify the presence or absence of identified somatic mutations in each sector. We also digitally measured gene expression and copy number alterations using NanoString assays. We identified the subclonal point mutations and determined the mutational timing and phylogenetic relationships among spatially separated sectors of each tumor. Truncal mutations, those shared by all sectors in the tumor, affected the well-described driver genes such as APC, TP53, and KRAS. With sequencing at 17 075×, we found that mutations first detected at a sequencing depth of 384× were in fact more widely shared among sectors than originally assessed. Interestingly, ultra-deep sequencing also revealed some mutations that were present in all spatially dispersed sectors, but at subclonal levels. Ultra-high-depth validation sequencing, copy number analysis, and gene expression profiling provided a comprehensive and accurate genomic landscape of spatial heterogeneity in CRC. Ultra-deep sequencing allowed more sensitive detection of somatic mutations and a more accurate assessment of ITH. By detecting the subclonal mutations with ultra-deep sequencing, we traced the genomic histories of each tumor and the relative timing of mutational events. We found evidence of early mixing, in which the subclonal ancestral mutations intermixed across the sectors before the acquisition of subsequent nontruncal mutations. Our findings also indicate that different CRC patients display markedly variable ITH, suggesting that each patient's tumor possesses a unique genomic history and spatial organization.


Subject(s)
Colorectal Neoplasms/genetics , Genes, Neoplasm , High-Throughput Nucleotide Sequencing , Mutation , Neoplasm Proteins/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , Male , Neoplasm Proteins/metabolism
9.
Sci Rep ; 6: 19552, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26790612

ABSTRACT

Dacomitinib, an irreversible pan-HER inhibitor, had shown modest clinical activity in squamous cell carcinoma of head and neck (SCCHN) patients. Therefore, validated predictive biomarkers are required to identify patients most likely to benefit from this therapeutic option. To characterize the genetic landscape of cisplatin-treated SCCHN genomes and identify potential predictive biomarkers for dacomitinib sensitivity, we performed whole exome sequencing on 18 cisplatin-resistant metastatic SCCHN tumors and their matched germline DNA. Platinum-based chemotherapy elevated the mutation rates of SCCHN compared to chemotherapy-naïve SCCHNs. Cisplatin-treated SCCHN genomes uniquely exhibited a novel mutational signature characterized by C:G to A:T transversions at CCR sequence contexts that may have arisen due to error-prone translesional synthesis. Somatic mutations in REV3L, the gene encoding the catalytic subunit of DNA polymerase ζ involved in translesional synthesis, are significantly enriched in a subset of patients who derived extended clinical benefit to dacomitinib (P = 0.04). Functional assays showed that loss-of-function of REV3L dramatically enhanced the sensitivity of SCCHN cells to dacomitinib by the loss of both translesion synthesis and homologous recombination pathways. Our data suggest that the 'platinum' mutational signature and inactivation of REV3L may inform treatment options in patients of recurrent SCCHN.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cisplatin/pharmacology , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Drug Resistance, Neoplasm/genetics , Exome , Head and Neck Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cisplatin/therapeutic use , DNA Mutational Analysis , Gene Silencing , Head and Neck Neoplasms/drug therapy , Humans , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , RNA Interference , RNA, Small Interfering/genetics , Recombinational DNA Repair , Squamous Cell Carcinoma of Head and Neck
10.
Genome Med ; 7: 98, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26395002

ABSTRACT

BACKGROUND: Carcinoma of the oral tongue (OTSCC) is the most common malignancy of the oral cavity, characterized by frequent recurrence and poor survival. The last three decades has witnessed a change in the OTSCC epidemiological profile, with increasing incidence in younger patients, females and never-smokers. Here, we sought to characterize the OTSCC genomic landscape and to determine factors that may delineate the genetic basis of this disease, inform prognosis and identify targets for therapeutic intervention. METHODS: Seventy-eight cases were subjected to whole-exome (n = 18) and targeted deep sequencing (n = 60). RESULTS: While the most common mutation was in TP53, the OTSCC genetic landscape differed from previously described cohorts of patients with head and neck tumors: OTSCCs demonstrated frequent mutations in DST and RNF213, while alterations in CDKN2A and NOTCH1 were significantly less frequent. Despite a lack of previously reported NOTCH1 mutations, integrated analysis showed enrichments of alterations affecting Notch signaling in OTSCC. Importantly, these Notch pathway alterations were prognostic on multivariate analyses. A high proportion of OTSCCs also presented with alterations in drug targetable and chromatin remodeling genes. Patients harboring mutations in actionable pathways were more likely to succumb from recurrent disease compared with those who did not, suggesting that the former should be considered for treatment with targeted compounds in future trials. CONCLUSIONS: Our study defines the Asian OTSCC mutational landscape, highlighting the key role of Notch signaling in oral tongue tumorigenesis. We also observed somatic mutations in multiple therapeutically relevant genes, which may represent candidate drug targets in this highly lethal tumor type.


Subject(s)
Carcinoma, Squamous Cell/genetics , Tongue Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Asian People/genetics , Chromatin/genetics , Female , Humans , Male , Middle Aged , Mutation , Prognosis , Receptors, Notch/genetics , Sequence Analysis, DNA , Singapore , Young Adult
11.
Genome Biol ; 16: 32, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25808843

ABSTRACT

BACKGROUND: Colorectal cancer with metastases limited to the liver (liver-limited mCRC) is a distinct clinical subset characterized by possible cure with surgery. We performed high-depth sequencing of over 750 cancer-associated genes and copy number profiling in matched primary, metastasis and normal tissues to characterize genomic progression in 18 patients with liver-limited mCRC. RESULTS: High depth Illumina sequencing and use of three different variant callers enable comprehensive and accurate identification of somatic variants down to 2.5% variant allele frequency. We identify a median of 11 somatic single nucleotide variants (SNVs) per tumor. Across patients, a median of 79.3% of somatic SNVs present in the primary are present in the metastasis and 81.7% of all alterations present in the metastasis are present in the primary. Private alterations are found at lower allele frequencies; a different mutational signature characterized shared and private variants, suggesting distinct mutational processes. Using B-allele frequencies of heterozygous germline SNPs and copy number profiling, we find that broad regions of allelic imbalance and focal copy number changes, respectively, are generally shared between the primary tumor and metastasis. CONCLUSIONS: Our analyses point to high genomic concordance of primary tumor and metastasis, with a thick common trunk and smaller genomic branches in general support of the linear progression model in most patients with liver-limited mCRC. More extensive studies are warranted to further characterize genomic progression in this important clinical population.


Subject(s)
Colorectal Neoplasms/genetics , Disease Progression , Genes, Neoplasm , High-Throughput Nucleotide Sequencing/methods , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Algorithms , Alleles , Allelic Imbalance/genetics , Base Sequence , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Computational Biology , Gene Frequency/genetics , Genome, Human , Humans , Liver Neoplasms/drug therapy , Molecular Sequence Data , Mutation/genetics , Neoplasms, Multiple Primary/genetics
12.
Eur Urol ; 68(1): 77-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25597018

ABSTRACT

BACKGROUND: Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. OBJECTIVE: The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. DESIGN, SETTING, AND PARTICIPANTS: Eight seminomas and matched normal samples were surgically obtained from eight patients. INTERVENTION: DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. RESULTS AND LIMITATIONS: The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. CONCLUSIONS: Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. PATIENT SUMMARY: We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy.


Subject(s)
Seminoma/genetics , Testicular Neoplasms/genetics , Adenosine Triphosphatases/genetics , Adolescent , Adult , Cadherins/genetics , Case-Control Studies , Casein Kinase II/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Copy Number Variations , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Humans , Male , Middle Aged , Mutation , Mutation Rate , Phosphatidylinositol 3-Kinases/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, DNA , Tumor Suppressor Proteins/genetics
13.
Sci Transl Med ; 3(77): 77ra30, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21471434

ABSTRACT

Fusion genes are chimeric genes formed in cancers through genomic aberrations such as translocations, amplifications, and rearrangements. To identify fusion genes in gastric cancer, we analyzed regions of chromosomal imbalance in a cohort of 106 primary gastric cancers and 27 cell lines derived from gastric cancers. Multiple samples exhibited genomic breakpoints in the 5' region of SLC1A2/EAAT2, a gene encoding a glutamate transporter. Analysis of a breakpoint-positive SNU16 cell line revealed expression of a CD44-SLC1A2 fusion transcript caused by a paracentric chromosomal inversion, which was predicted to produce a truncated but functional SLC1A2 protein. In primary tumors, CD44-SLC1A2 gene fusions were detected in 1 to 2% of gastric cancers, but not in adjacent matched normal gastric tissues. When we specifically silenced CD44-SLC1A2, cellular proliferation, invasion, and anchorage-independent growth were significantly reduced. Conversely, CD44-SLC1A2 overexpression in gastric cells stimulated these pro-oncogenic traits. CD44-SLC1A2 silencing caused significant reductions in intracellular glutamate concentrations and sensitized SNU16 cells to cisplatin, a commonly used chemotherapeutic agent in gastric cancer. We conclude that fusion of the SLC1A2 gene coding region to CD44 regulatory elements likely causes SLC1A2 transcriptional dysregulation, because tumors expressing high SLC1A2 levels also tended to be CD44-SLC1A2-positive. CD44-SLC1A2 may represent a class of gene fusions in cancers that establish a pro-oncogenic metabolic milieu favoring tumor growth and survival.


Subject(s)
Gene Fusion/genetics , Glutamate Plasma Membrane Transport Proteins/genetics , Hyaluronan Receptors/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Excitatory Amino Acid Transporter 2 , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
14.
Clin Cancer Res ; 17(9): 2657-67, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21415212

ABSTRACT

PURPOSE: MicroRNAs (miRNA) play pivotal oncogenic and tumor-suppressor roles in several human cancers. We sought to discover novel tumor-suppressor miRNAs in gastric cancer (GC). EXPERIMENTAL DESIGN: Using Agilent miRNA microarrays, we compared miRNA expression profiles of 40 primary gastric tumors and 40 gastric normal tissues, identifying miRNAs significantly downregulated in gastric tumors. RESULTS: Among the top 80 miRNAs differentially expressed between gastric tumors and normals (false discovery rate < 0.01), we identified hsa-miR-486 (miR-486) as a significantly downregulated miRNA in primary GCs and GC cell lines. Restoration of miR-486 expression in GC cell lines (YCC3, SCH and AGS) caused suppression of several pro-oncogenic traits, whereas conversely inhibiting miR-486 expression in YCC6 GC cells enhanced cellular proliferation. Array-CGH analysis of 106 primary GCs revealed genomic loss of the miR-486 locus in approximately 25% to 30% of GCs, including two tumors with focal genomic losses specifically deleting miR-486, consistent with miR-486 playing a tumor-suppressive role. Bioinformatic analysis identified the secreted antiapoptotic glycoprotein OLFM4 as a potential miR-486 target. Restoring miR-486 expression in GC cells decreased endogenous OLFM4 transcript and protein levels, and also inhibited expression of luciferase reporters containing an OLFM4 3' untranslated region with predicted miR-486 binding sites. Supporting the biological relevance of OLFM4 as a miR-486 target, proliferation in GC cells was also significantly reduced by OLFM4 silencing. CONCLUSIONS: miR-486 may function as a novel tumor-suppressor miRNA in GC. Its antioncogenic activity may involve the direct targeting and inhibition of OLFM4.


Subject(s)
Carcinoma/genetics , Gene Deletion , Granulocyte Colony-Stimulating Factor/genetics , MicroRNAs/physiology , Stomach Neoplasms/genetics , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Genomic Instability/genetics , Genomic Instability/physiology , Granulocyte Colony-Stimulating Factor/metabolism , Humans , MicroRNAs/genetics , Microarray Analysis , Neoplasms/genetics , Neoplasms/pathology , Stomach Neoplasms/pathology
15.
Genome Biol ; 11(8): R89, 2010.
Article in English | MEDLINE | ID: mdl-20799932

ABSTRACT

BACKGROUND: Burkholderia thailandensis is a non-pathogenic environmental saprophyte closely related to Burkholderia pseudomallei, the causative agent of the often fatal animal and human disease melioidosis. To study B. thailandensis genomic variation, we profiled 50 isolates using a pan-genome microarray comprising genomic elements from 28 Burkholderia strains and species. RESULTS: Of 39 genomic regions variably present across the B. thailandensis strains, 13 regions corresponded to known genomic islands, while 26 regions were novel. Variant B. thailandensis isolates exhibited isolated acquisition of a capsular polysaccharide biosynthesis gene cluster (B. pseudomallei-like capsular polysaccharide) closely resembling a similar cluster in B. pseudomallei that is essential for virulence in mammals; presence of this cluster was confirmed by whole genome sequencing of a representative variant strain (B. thailandensis E555). Both whole-genome microarray and multi-locus sequence typing analysis revealed that the variant strains formed part of a phylogenetic subgroup distinct from the ancestral B. thailandensis population and were associated with atypical isolation sources when compared to the majority of previously described B. thailandensis strains. In functional assays, B. thailandensis E555 exhibited several B. pseudomallei-like phenotypes, including colony wrinkling, resistance to human complement binding, and intracellular macrophage survival. However, in murine infection assays, B. thailandensis E555 did not exhibit enhanced virulence relative to other B. thailandensis strains, suggesting that additional factors are required to successfully colonize and infect mammals. CONCLUSIONS: The discovery of such novel variant strains demonstrates how unbiased genomic surveys of non-pathogenic isolates can reveal insights into the development and emergence of new pathogenic species.


Subject(s)
Burkholderia/genetics , Burkholderia/pathogenicity , Genome, Bacterial , Multigene Family , Animals , Burkholderia/isolation & purification , Burkholderia Infections/immunology , Genetic Speciation , Genetic Variation , Humans , Metabolic Networks and Pathways/genetics , Mice , Polysaccharides, Bacterial/biosynthesis , Virulence/genetics
16.
Nat Med ; 16(7): 793-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20526349

ABSTRACT

Although recurrent gene fusions involving erythroblastosis virus E26 transformation-specific (ETS) family transcription factors are common in prostate cancer, their products are considered 'undruggable' by conventional approaches. Recently, rare targetable gene fusions involving the anaplastic lymphoma receptor tyrosine kinase (ALK) gene, have been identified in 1-5% of lung cancers, suggesting that similar rare gene fusions may occur in other common epithelial cancers, including prostate cancer. Here we used paired-end transcriptome sequencing to screen ETS rearrangement-negative prostate cancers for targetable gene fusions and identified the SLC45A3-BRAF (solute carrier family 45, member 3-v-raf murine sarcoma viral oncogene homolog B1) and ESRP1-RAF1 (epithelial splicing regulatory protein-1-v-raf-1 murine leukemia viral oncogene homolog-1) gene fusions. Expression of SLC45A3-BRAF or ESRP1-RAF1 in prostate cells induced a neoplastic phenotype that was sensitive to RAF and mitogen-activated protein kinase kinase (MAP2K1) inhibitors. Screening a large cohort of patients, we found that, although rare, recurrent rearrangements in the RAF pathway tend to occur in advanced prostate cancers, gastric cancers and melanoma. Taken together, our results emphasize the key role of RAF family gene rearrangements in cancer, suggest that RAF and MEK inhibitors may be useful in a subset of gene fusion-harboring solid tumors and demonstrate that sequencing of tumor transcriptomes and genomes may lead to the identification of rare targetable fusions across cancer types.


Subject(s)
Melanoma/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-raf/genetics , RNA-Binding Proteins/genetics , Stomach Neoplasms/genetics , Translocation, Genetic , Humans , Male , Membrane Transport Proteins/genetics , Monosaccharide Transport Proteins , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Signal Transduction/genetics
17.
J Clin Invest ; 119(8): 2171-83, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19620787

ABSTRACT

Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/genetics , Genes, ras , Membrane Proteins/genetics , Oncogenes , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/physiology , Animals , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Computational Biology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Dosage , Gene Expression Profiling , Genes, erbB-2 , Humans , Immunohistochemistry , Membrane Proteins/analysis , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/physiology , Mice , Mice, Inbred BALB C , Phosphorylation , RNA Interference , rab GTP-Binding Proteins/physiology
18.
Science ; 322(5908): 1695-9, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19008416

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Histones/metabolism , MicroRNAs/genetics , Neoplasms/genetics , Prostatic Neoplasms/genetics , Transcription Factors/genetics , 3' Untranslated Regions , Algorithms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Disease Progression , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Female , Genome, Human , Humans , Lysine/metabolism , Male , Methylation , MicroRNAs/metabolism , Neoplasm Metastasis , Neoplasms/metabolism , Polycomb Repressive Complex 2 , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcription Factors/metabolism
19.
Genes Chromosomes Cancer ; 47(12): 1098-109, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18720522

ABSTRACT

A study was undertaken to correlate telomere dysfunction and genomic instability with the histopathological grades and the estrogen and progesterone receptor status in breast cancer. Sixty-one archived breast tissues (38 cancer tissues and 23 paired normal tissues) were used in the study. The breast tumor tissues showed significantly shorter telomeres (7.7 kb) compared with the paired adjacent tissues (9.0 kb) by Southern blot analysis. Moreover, telomere shortening was more significant in Grade III tumors than in the Grade II tumors (P = 0.05). Quantitative fluorescence in situ hybridization on paraffin tissue sections revealed a similar trend in telomere shortening. Telomere attrition was associated with telomere dysfunction as revealed by the presence of significantly higher anaphase bridges in tumor cells which was tumor grade dependent. Furthermore, estrogen receptive negative tumors displayed higher anaphase and internuclear bridges. Selected samples from each grade showed greater genomic imbalances in the higher grades than the lower grade tumors as detected by array-comparative genomic hybridization. Telomerase activity was found to be higher in the higher grades (Grade II and III) compared with the lower grade (Grade I). The average mRNA expression of TRF1 and POT1 was lower in the tumor tissues than in the normal tissues. Tankyrase 1 mRNA expression showed a grade-dependent increase in tumor tissues and its expression was also high in estrogen and progesterone negative tumors. The data support the notion that telomere dysfunction might be of value as a marker of aggressiveness of the tumors in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Genomic Instability/genetics , Telomere/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Female , Humans , RNA, Messenger/metabolism , Shelterin Complex , Tankyrases/genetics , Tankyrases/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
20.
Proteome Sci ; 5: 18, 2007 Sep 26.
Article in English | MEDLINE | ID: mdl-17897441

ABSTRACT

BACKGROUND: Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE). RESULTS: Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE) in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE) showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS), which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. CONCLUSION: The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein separation tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...