Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 237: 126488, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32408049

ABSTRACT

The symbiosis of soybean with Bradyrhizobium diazoefficiens USDA110, which always competes with other rhizobia in the field, is of great agronomic and environmental importance. Herein, a dual-luciferase reporter assay was utilized to monitor the dynamics of two dominant bradyrhizobia infecting roots of soybean. More explicitly, luciferase-tagged B. diazoefficiens USDA110 (USDA110-FLuc) and Bradyrhizobium elkanii USDA 94 (USDA94-RLuc) were designed, co-inoculated into soybean seeds, and observed for their colonization in root nodules by bioluminescence imaging. The results showed that USDA110-FLuc initiated infection earlier than USDA94-RLuc, but its occupancy in the nodules decreased as the plant grew. A nodulation test showed that nodD1 mutant USDA110 strains, including CRISPR engineered mutants, were less competitive than wild type. I constructed siRNAs to knockdown nodD1 at different target sites and transformed them into the bacteria. Surprisingly, although siRNAs - with 3' end target sites - were able to repress up to 65% of nodD1 expression, the profiling of total RNAs with a bioanalyzer revealed that 23S/16S-rRNA ratios of siRNA-transformed and wild type USDA110 strains were similar, but lower than that of nodD1 mutant. In short, the current work - while reporting the competitiveness of B. diazoefficiens USDA110 in early occupancy of soybean nodules and the gene nodD1 as a key determinant of this infection - gives an insight on siRNA silencing in microbes, and demonstrates a highly efficient imaging approach that could entail many new avenues for many biological research fields.


Subject(s)
Bacterial Proteins/genetics , Bradyrhizobium/genetics , Glycine max/microbiology , Plant Root Nodulation , CRISPR-Cas Systems , Fluorescent Dyes/analysis , Genes, Bacterial , Luciferases, Renilla , Nitrogen Fixation/genetics , Plant Development , Plant Roots/microbiology , RNA, Small Interfering , Soil Microbiology , Symbiosis , Transformation, Bacterial
2.
PLoS One ; 13(4): e0194671, 2018.
Article in English | MEDLINE | ID: mdl-29617389

ABSTRACT

Soybean plants establish symbiotic relationships with soil rhizobia which form nodules on the plant roots. Nodule formation starts when the plant roots exudate isoflavonoids that induce nod gene expression of a specific Bradyrhizobium. We examined the specific indigenous rhizobia that form nodules with the soybean cultivars Peking and Tamahomare in different soils. PCR-RFLP analysis targeted to the 16S-23S rRNA gene internal transcribed spacer (ITS) region of the bacterial type of each root nodule showed that Bradyrhizobium japonicum (USDA110-type) and Bradyrhizobium elkanii (USDA94-type) had high compatibility with the Tamahomare and Peking cultivars, respectively. We grew 93 recombinant inbred lines (RIL) of soybean seeds derived from the cross between Peking and Tamahomare in three different field soils and identified the indigenous rhizobia nodulating each line using the same PCR-RFLP analysis. QTL analysis identified one QTL region in chromosome-18 with a highly significant additive effect that controls compatibility with both B. japonicum USDA110 and B. elkanii USDA94. We also measured the amount of daidzein and genistein secretion from roots of the 93 RILs by HPLC analysis. QTL analysis showed one QTL region in chromosome-18 controlling genistein secretion from roots and coinciding with that regulating compatibility of specific indigenous rhizobia with soybean. The amount of genistein may be a major regulatory factor in soybean-rhizobium compatibility.


Subject(s)
Bradyrhizobium/genetics , Genistein/metabolism , Glycine max/metabolism , Quantitative Trait Loci , Bradyrhizobium/physiology , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Flavonoids/metabolism , Isoflavones/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , Glycine max/genetics , Glycine max/microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...