Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Biol Chem ; 264(7): 3786-93, 1989 Mar 05.
Article in English | MEDLINE | ID: mdl-2917977

ABSTRACT

The literature suggests that cholesterol and sphingomyelin might be essentially confined to plasma membranes in mammalian cells; however, this premise has thus far escaped a direct test. We explored the issue in three ways. First, we fractionated whole homogenates of cultured human fibroblasts by equilibrium sucrose density gradient centrifugation. We found that the profiles of cholesterol and sphingomyelin were indistinguishable from those of two plasma membrane markers, 5' nucleotidase and [3H]galactose, which was conjugated to the surface of intact cells from an exogenous donor by galactosyltransferase. Second, we determined the relative surface areas of intact cells from their uptake of 1-(4-trimethyl-amino)phenyl-6-phenylhexa-1,3,5-triene, a cationic fluorescent dye which partitions into but does not cross plasma membranes. Relative to human red cell ghosts, the apparent surface area of the fibroblasts was 17,500 microns2/cell while for canine hepatocytes, the value was 11,500 microns2/cell. The relative ratios of cell cholesterol to dye binding (hence, surface area) were quite similar in ghosts, fibroblasts, and liver cells; namely 1.0, 1.12, and 0.67, respectively. Finally, we found that the specific ratios of both cholesterol and sphingomyelin to 5' nucleotidase were only 10% less in gradient-purified plasma membranes than in whole homogenates. Similar results were obtained using an entirely different method of purification: two-phase aqueous partition. The cholesterol and sphingomyelin in fractions rich in other membranes was closely proportional to their 5' nucleotidase content, suggesting that the presence of these lipids reflected contamination by plasma membrane fragments. The 5' nucleotidase/phospholipid ratio in the purified plasma membrane fraction was roughly twice that in whole cells. We conclude that the compartment marked by 5' nucleotidase in cultured human fibroblasts contains approximately 90% of the two named lipids and half the cell phospholipid phosphorus.


Subject(s)
Cell Membrane/analysis , Cholesterol/analysis , Membrane Lipids/analysis , Phospholipids/analysis , Sphingomyelins/analysis , Cell Compartmentation , Cell Fractionation , Cells, Cultured , Centrifugation, Isopycnic , Erythrocytes/analysis , Fibroblasts/analysis , Humans , Liver/analysis , Male , Solubility
3.
J Biol Chem ; 258(24): 15130-4, 1983 Dec 25.
Article in English | MEDLINE | ID: mdl-6418742

ABSTRACT

We have used the enzyme cholesterol oxidase, which catalyzes the oxidation of cholesterol to cholest-4-en-3-one, to examine the distribution of cholesterol in cultured fibroblasts, Chinese hamster ovary cells, and isolated rat liver hepatocytes. While the plasma membrane normally was not attacked by cholesterol oxidase, we found that treating cells with low ionic strength buffer and glutaraldehyde rendered their cholesterol highly susceptible to oxidation. Most of the cholesterol was oxidized in all three cell types: 94% in fibroblasts, 92% in Chinese hamster ovary cells, and 80% in hepatocytes. Given that the enzyme had access only to the outer surface of the cells and cholesterol can move rapidly across the fixed plasma membrane, these values are taken to reflect the fraction of cellular cholesterol present in the plasma membrane. Additional experiments confirmed this interpretation. Fibroblasts were labeled with [3H]cholesterol by brief exposure to exogenous radiolabel and incubated with [14C]mevalonic acid to label cholesterol biosynthetically. Cholesterol oxidase attacked at least 97% of the exogenous label but as little as 10% of the biosynthetically labeled cholesterol. These data suggest that the cholesterol oxidase did not reach the intracellular pool and that cholesterol in the plasma membrane is not in rapid equilibrium with internal membranes. A study of the transfer of cholesterol to plasma from cells labeled biosynthetically with [3H]cholesterol and exogenously with [14C]cholesterol confirmed the different subcellular distribution of the two labels. These studies demonstrate that an unexpectedly high proportion of cell cholesterol is associated with plasma membranes and that this cholesterol pool can be rapidly and selectively labeled and oxidized. These features make cholesterol a useful specific marker for the plasma membrane.


Subject(s)
Cholesterol/metabolism , Animals , Cell Line , Cholesterol Oxidase/metabolism , Cricetinae , Cricetulus , Female , Fibroblasts/metabolism , Glutaral/pharmacology , Humans , Infant, Newborn , Liver/metabolism , Male , Osmolar Concentration , Ovary/cytology , Rats , Rats, Inbred Strains , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...