Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nucleic Acids Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922686

ABSTRACT

The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.

2.
Med Eng Phys ; 125: 104120, 2024 03.
Article in English | MEDLINE | ID: mdl-38508798

ABSTRACT

Electrochemotherapy is a cancer treatment in which local pulsed electric fields are delivered through electrodes. The effectiveness of the treatment depends on exposing the tumor to a threshold electric field. Electrode geometry plays an important role in the resulting electric field distribution, especially in hard-to-reach areas and deep-seated tumors. We designed and developed a novel tetrapolar single-needle electrode for proper treatment in bone cavities. In silico and in vitro experiments were performed to evaluate the electric field and electric current produced by the electrode. In addition, tomography images of a real case of nasal cavity tumor were segmented into a 3D simulation to evaluate the electrode performance in a bone cavity. The proposed electrode was validated and its operating range was set up to 650 V. In the nasal cavity tumor, we found that the electrode can produce a circular electric field of 3 mm with an electric current of 14.1 A at 500 V, which is compatible with electrochemotherapy standards and commercial equipment.


Subject(s)
Electrochemotherapy , Neoplasms , Humans , Computer Simulation , Needles , Electrodes
3.
Aesthet Surg J ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470860

ABSTRACT

BACKGROUND: Polyurethane (PU)-coated breast implants are known for their strong integration into breast tissue and the formation of capsules around them. However, capsular contracture can pose both aesthetic and clinical challenges. OBJECTIVES: To analyze the biological and morphological characteristics of the capsular tissue surrounding PU-coated implants, irrespective of their contracture status, and to assess their potential suitability as a flap in revision breast surgery for capsular contracture. METHODS: A total of 23 tissue samples were harvested from the capsules surrounding PU-coated breast implants in 12 female patients during replacement or revision surgery. We evaluated collagen abundance, cellular and vascular density, inflammation, collagen band types and alignment, synovial metaplasia, capsule thickness, and the expression of inflammatory biomarkers and myofibroblasts using immunohistochemical techniques. Scanning electron microscopy was used to assess implant surface characteristics over time. RESULTS: We found a significant association of capsule contraction with longer implantation durations and greater implant surface roughness (p = 0.018 and p = 0.033, respectively). Synovial metaplasia was significantly more frequent in noncontracted capsules (p = 0.0049). Both capsule types consisted of paucicellular, type I collagen-rich compact fibrous tissue with low vascularization. There was a marked reduction in inflammatory cells within the foreign body granuloma. The expression of inflammatory biomarkers in the capsular tissue was negligible. CONCLUSIONS: Given the reduced levels of inflammatory and vascular components within the dense, fibrous capsular tissue, we consider them to be viable alternatives for use as capsular flaps in revision surgery. This strategy has the potential to mimic the reconstruction achieved with acellular dermal matrix.

4.
Entropy (Basel) ; 25(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37509938

ABSTRACT

Breast cancer is a disease that affects women in different countries around the world. The real cause of breast cancer is particularly challenging to determine, and early detection of the disease is necessary for reducing the death rate, due to the high risks associated with breast cancer. Treatment in the early period can increase the life expectancy and quality of life for women. CAD (Computer Aided Diagnostic) systems can perform the diagnosis of the benign and malignant lesions of breast cancer using technologies and tools based on image processing, helping specialist doctors to obtain a more precise point of view with fewer processes when making their diagnosis by giving a second opinion. This study presents a novel CAD system for automated breast cancer diagnosis. The proposed method consists of different stages. In the preprocessing stage, an image is segmented, and a mask of a lesion is obtained; during the next stage, the extraction of the deep learning features is performed by a CNN-specifically, DenseNet 201. Additionally, handcrafted features (Histogram of Oriented Gradients (HOG)-based, ULBP-based, perimeter area, area, eccentricity, and circularity) are obtained from an image. The designed hybrid system uses CNN architecture for extracting deep learning features, along with traditional methods which perform several handcraft features, following the medical properties of the disease with the purpose of later fusion via proposed statistical criteria. During the fusion stage, where deep learning and handcrafted features are analyzed, the genetic algorithms as well as mutual information selection algorithm, followed by several classifiers (XGBoost, AdaBoost, Multilayer perceptron (MLP)) based on stochastic measures, are applied to choose the most sensible information group among the features. In the experimental validation of two modalities of the CAD design, which performed two types of medical studies-mammography (MG) and ultrasound (US)-the databases mini-DDSM (Digital Database for Screening Mammography) and BUSI (Breast Ultrasound Images Dataset) were used. Novel CAD systems were evaluated and compared with recent state-of-the-art systems, demonstrating better performance in commonly used criteria, obtaining ACC of 97.6%, PRE of 98%, Recall of 98%, F1-Score of 98%, and IBA of 95% for the abovementioned datasets.

5.
Fitoterapia ; 169: 105593, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37355051

ABSTRACT

From the bioactive extract of the euphorbiaceous Croton niveus Jacq., three previously unreported ent-rosane diterpenes have been isolated and characterized by conventional methods, in addition to the known compounds lupeol, cajucarinolide and some phytosterols. Two of the ent-rosane diterpenes displayed activity against HCT-15 and PC-3 cancer cell lines, and the results of docking calculations of these compounds with NF-κB and STAT3 receptors agreed with the proposed mode of action of diterpenes against PC-3 cells.


Subject(s)
Antineoplastic Agents , Croton , Diterpenes, Kaurane , Diterpenes , Euphorbiaceae , Molecular Structure , Diterpenes/pharmacology , Antineoplastic Agents/pharmacology
7.
Cell Rep ; 42(1): 111917, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640344

ABSTRACT

The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Breaks, Double-Stranded , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , DNA End-Joining Repair , DNA/metabolism , DNA Repair
8.
Nucleic Acids Res ; 51(2): 668-686, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36629261

ABSTRACT

The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.


Subject(s)
Candida glabrata , Telomere-Binding Proteins , Humans , Candida glabrata/genetics , Candida glabrata/metabolism , Telomere-Binding Proteins/metabolism , Protein Binding , Shelterin Complex , Telomere/genetics , Telomere/metabolism
9.
Princ Pract Clin Res ; 8(2): 31-42, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-36561218

ABSTRACT

Introduction: Run-In (RI) periods can be used to improve the validity of randomized controlled trials (RCTs), but their utility in Chronic Pain (CP) RCTs is debated. Cost-effectiveness analysis (CEA) methods are commonly used in evaluating the results of RCTs, but they are seldom used for designing RCTs. We present a step-by-step overview to objectively design RCTs via CEA methods and specifically determine the cost effectiveness of a RI period in a CP RCT. Methods: We applied the CEA methodology to data obtained from several noninvasive brain stimulation CP RCTs, specifically focusing on (1) defining the CEA research question, (2) identifying RCT phases and cost ingredients, (3) discounting, (4) modeling the stochastic nature of the RCT, and (5) performing sensitivity analyses. We assessed the average cost-effectiveness ratios and incremental cost effectiveness ratios of varied RCT designs and the impact on cost-effectiveness by the inclusion of a RI period vs. No-Run-In (NRI) period. Results: We demonstrated the potential impact of varying the number of institutions, number of patients that could be accommodated per institution, cost and effectiveness discounts, RCT component costs, and patient adherence characteristics on varied RI and NRI RCT designs. In the specific CP RCT designs that we analyzed, we demonstrated that lower patient adherence, lower baseline assessment costs, and higher treatment costs all necessitated the inclusion of an RI period to be cost-effective compared to NRI RCT designs. Conclusions: Clinical trialists can optimize CP RCT study designs and make informed decisions regarding RI period inclusion/exclusion via CEA methods.

10.
Eur J Neurosci ; 56(12): 6258-6268, 2022 12.
Article in English | MEDLINE | ID: mdl-36300719

ABSTRACT

To compare cell adhesion molecules levels in cerebrospinal fluid (CSF) between Zika virus (ZIKV)-exposed neonates with/without microcephaly (cases) and controls, 16 neonates (cases), 8 (50%) with and 8 (50%) without microcephaly, who underwent lumbar puncture (LP) during the ZIKV epidemic (2015-2016) were included. All mothers reported ZIKV clinical symptoms during gestation, all neonates presented with congenital infection findings, and other congenital infections were ruled out. Fourteen control neonates underwent LP in the same laboratory (2017-2018). Five cell adhesion proteins were measured in the CSF using mass spectrometry. Neurexin-1 (3.50 [2.00-4.00] vs. 7.5 [5.00-10.25], P = 0.001), neurexin-3 (0.00 [0.00-0.00] vs. 3.00 [1.50-4.00], P = 0.001) and neural cell adhesion molecule 2 (NCAM2) (0.00 [0.00-0.75] vs. 1.00 [1.00-2.00], P = 0.001) were significantly lower in microcephalic and non-microcephalic cases than in controls. When these two sub-groups of prenatally ZIKA-exposed children were compared to controls separately, the same results were found. When cases with and without microcephaly were compared, no difference was found. Neurexin-3 (18.8% vs. 78.6%, P = 0.001) and NCAM2 (25.0% vs. 85.7%, P = 0.001) were less frequently found among the cases. A positive correlation was found between cephalic perimeter and levels of these two proteins. Neurexin-2 and neurexin-2b presented no significant differences. Levels of three cell adhesion proteins were significantly lower in CSF of neonates exposed to ZIKV before birth than in controls, irrespective of presence of congenital microcephaly. Moreover, the smaller the cephalic perimeter, the lower CSF cell adhesion protein levels. These findings suggest that low CSF levels of neurexin-1, neurexin-3 and NCAM2 may reflect the effects of ZIKV on foetal brain development.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Infant, Newborn , Pregnancy , Female , Child , Humans , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Microcephaly/epidemiology , Case-Control Studies , Cell Adhesion , Pregnancy Complications, Infectious/epidemiology , Cell Adhesion Molecules , Neural Cell Adhesion Molecules
11.
Methods Enzymol ; 673: 311-358, 2022.
Article in English | MEDLINE | ID: mdl-35965011

ABSTRACT

Single molecule biophysics experiments for the study of DNA-protein interactions usually require production of a homogeneous population of long DNA molecules with controlled sequence content and/or internal tertiary structures. Traditionally, Lambda phage DNA has been used for this purpose, but it is difficult to customize. In this article, we provide a detailed and simple protocol for cloning large (~25kbp) plasmids with bespoke sequence content, which can be used to generate custom DNA constructs for a range of single-molecule experiments. In particular, we focus on a procedure for making long single-stranded DNA (ssDNA) molecules, ssDNA-dsDNA hybrids and long DNA constructs with flaps, which are especially relevant for studying the activity of DNA helicases and translocases. Additionally, we describe how the modification of the free ends of such substrates can facilitate their binding to functionalized surfaces allowing immobilization and imaging using dual optical tweezers and confocal microscopy. Finally, we provide examples of how these DNA constructs have been applied to study the activity of human DNA helicase B (HELB). The techniques described herein are simple, versatile, adaptable, and accessible to any laboratory with access to standard molecular biology methods.


Subject(s)
Nucleic Acids , Optical Tweezers , DNA/chemistry , DNA Helicases/metabolism , DNA, Single-Stranded , Humans
12.
Sensors (Basel) ; 22(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35890790

ABSTRACT

This work proposes a novel scheme for speckle suppression on medical images acquired by ultrasound sensors. The proposed method is based on the block matching procedure by using mutual information as a similarity measure in grouping patches in a clustered area, originating a new despeckling method that integrates the statistical properties of an image and its texture for creating 3D groups in the BM3D scheme. For this purpose, the segmentation of ultrasound images is carried out considering superpixels and a variation of the local binary patterns algorithm to improve the performance of the block matching procedure. The 3D groups are modeled in terms of grouped tensors and despekled with singular value decomposition. Moreover, a variant of the bilateral filter is used as a post-processing step to recover and enhance edges' quality. Experimental results have demonstrated that the designed framework guarantees a good despeckling performance in ultrasound images according to the objective quality criteria commonly used in literature and via visual perception.


Subject(s)
Algorithms , Ultrasonography/methods
13.
Proc Natl Acad Sci U S A ; 119(15): e2112376119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385349

ABSTRACT

Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA­single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5' to 3' direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.


Subject(s)
DNA Helicases , DNA, Single-Stranded , Molecular Motor Proteins , Replication Protein A , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Humans , Hydrolysis , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/metabolism , Protein Binding , Replication Protein A/metabolism
14.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34250901

ABSTRACT

Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.


Subject(s)
Bacterial Proteins/metabolism , Cytidine Triphosphate/metabolism , DNA, Bacterial/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Centromere/metabolism , Chromosome Segregation , Chromosomes, Bacterial , Hydrolysis , Protein Binding , Pyrophosphatases/metabolism
15.
Cancer Res ; 81(19): 4910-4925, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34321241

ABSTRACT

Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability. SIGNIFICANCE: This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.See related commentary by Barcena-Varela and Lujambio, p. 4899.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Breaks, Double-Stranded , Liver Neoplasms/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , DNA End-Joining Repair , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Models, Biological , Nucleic Acid Conformation , Nucleotide Motifs , Prognosis , RNA, Long Noncoding/chemistry
16.
Therap Adv Gastroenterol ; 14: 17562848211023410, 2021.
Article in English | MEDLINE | ID: mdl-34178116

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) with acute respiratory distress syndrome is a life-threatening condition. A previous diagnosis of chronic liver disease is associated with poorer outcomes. Nevertheless, the impact of silent liver injury has not been investigated. We aimed to explore the association of pre-admission liver fibrosis indices with the prognosis of critically ill COVID-19 patients. METHODS: The work presented was an observational study in 214 patients with COVID-19 consecutively admitted to the intensive care unit (ICU). Pre-admission liver fibrosis indices were calculated. In-hospital mortality and predictive factors were explored with Kaplan-Meier and Cox regression analysis. RESULTS: The mean age was 59.58 (13.79) years; 16 patients (7.48%) had previously recognised chronic liver disease. Up to 78.84% of patients according to Forns, and 45.76% according to FIB-4, had more than minimal fibrosis. Fibrosis indices were higher in non-survivors [Forns: 6.04 (1.42) versus 4.99 (1.58), p < 0.001; FIB-4: 1.77 (1.17) versus 1.41 (0.91), p = 0.020)], but no differences were found in liver biochemistry parameters. Patients with any degree of fibrosis either by Forns or FIB-4 had a higher mortality, which increased according to the severity of fibrosis (p < 0.05 for both indexes). Both Forns [HR 1.41 (1.11-1.81); p = 0.006] and FIB-4 [HR 1.31 (0.99-1.72); p = 0.051] were independently related to survival after adjusting for the Charlson comorbidity index, APACHE II, and ferritin. CONCLUSION: Unrecognised liver fibrosis, assessed by serological tests prior to admission, is independently associated with a higher risk of death in patients with severe COVID-19 admitted to the ICU.

17.
Pharmaceutics ; 13(5)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063469

ABSTRACT

Ample evidence exists on the role of interleukin-12 (IL-12) in the response against many pathogens, as well as on its remarkable antitumor properties. However, the unexpected toxicity and disappointing results in some clinical trials are prompting the design of new strategies and/or vectors for IL-12 delivery. This study was conceived to further endorse the use of gemini cationic lipids (GCLs) in combination with zwitterionic helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine) as nanovectors for the insertion of plasmid DNA encoding for IL-12 (pCMV-IL12) into cells. Optimal GCL formulations previously reported by us were selected for IL-12-based biophysical experiments. In vitro studies demonstrated efficient pCMV-IL12 transfection by GCLs with comparable or superior cytokine levels than those obtained with commercial control Lipofectamine2000*. Furthermore, the nanovectors did not present significant toxicity, showing high cell viability values. The proteins adsorbed on the nanovector surface were found to be mostly lipoproteins and serum albumin, which are both beneficial to increase the blood circulation time. These outstanding results are accompanied by an initial physicochemical characterization to confirm DNA compaction and protection by the lipid mixture. Although further studies would be necessary, the present GCLs exhibit promising characteristics as candidates for pCMV-IL12 transfection in future in vivo applications.

18.
Sci Rep ; 11(1): 8474, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875756

ABSTRACT

Not every neonate with congenital Zika virus (ZIKV) infection (CZI) is born with microcephaly. We compared inflammation mediators in CSF (cerebrospinal fluid obtained from lumbar puncture) between ZIKV-exposed neonates with/without microcephaly (cases) and controls. In Brazil, in the same laboratory, we identified 14 ZIKV-exposed neonates during the ZIKV epidemic (2015-2016), 7(50%) with and 7(50%) without microcephaly, without any other congenital infection, and 14 neonates (2017-2018) eligible to be controls and to match cases. 29 inflammation mediators were measured using Luminex immunoassay and multidimensional analyses were employed. Neonates with ZIKV-associated microcephaly presented substantially higher degree of inflammatory perturbation, associated with uncoupled inflammatory response and decreased correlations between concentrations of inflammatory biomarkers. The groups of microcephalic and non-microcephalic ZIKV-exposed neonates were distinguished from the control group (area under curve [AUC] = 1; P < 0.0001). Between controls and those non-microcephalic exposed to ZIKV, IL-1ß, IL-3, IL-4, IL-7 and EOTAXIN were the top CSF markers. By comparing the microcephalic cases with controls, the top discriminant scores were for IL-1ß, IL-3, EOTAXIN and IL-12p70. The degree of inflammatory imbalance may be associated with microcephaly in CZI and it may aid additional investigations in experimental pre-clinical models testing immune modulators in preventing extensive damage of the Central Nervous System.


Subject(s)
Biomarkers/cerebrospinal fluid , Inflammation Mediators/cerebrospinal fluid , Microcephaly/pathology , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/complications , Zika Virus/isolation & purification , Brazil/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Microcephaly/cerebrospinal fluid , Microcephaly/epidemiology , Microcephaly/etiology , Pregnancy , Pregnancy Complications, Infectious/cerebrospinal fluid , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/etiology , Prognosis , Prospective Studies , Retrospective Studies , Zika Virus Infection/virology
19.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33301732

ABSTRACT

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Subject(s)
Cell Cycle Proteins/genetics , Multiprotein Complexes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Adenosine Triphosphatases/genetics , Biophysical Phenomena , Cell Cycle Proteins/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/ultrastructure , DNA-Binding Proteins/genetics , Humans , Interphase/genetics , Mitosis/genetics , Multiprotein Complexes/ultrastructure , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Sumoylation/genetics , Cohesins
20.
Nucleic Acids Res ; 48(22): 12917-12928, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33245767

ABSTRACT

Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.


Subject(s)
Adenine/chemistry , DNA/genetics , RNA, Double-Stranded/genetics , Uracil/chemistry , DNA/chemistry , DNA/ultrastructure , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nucleic Acid Conformation , Nucleotide Motifs/genetics , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...