Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 146(5): 054901, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178815

ABSTRACT

In this work, we have measured, by means of optical tweezers, forces acting on depletion-induced DNA condensates due to the presence of the DNA-like charged protein bovine serum albumin (BSA). The stretching and unfolding measurements performed on the semi-flexible DNA chain reveal (1) the softening of the uncondensed DNA contour length and (2) a mechanical behavior strikingly different from those previously observed: the force-extension curves of BSA-induced DNA condensates lack the "saw-tooth" pattern and applied external forces as high as ≈80 pN are unable to fully unfold the condensed DNA contour length. This last mechanical experimental finding is in agreement with force-induced "unpacking" detailed Langevin dynamics simulations recently performed by Cortini et al. on model rod-like shaped condensates. Furthermore, a simple thermodynamics analysis of the unfolding process has enabled us to estimate the free energy involved in the DNA condensation: the estimated depletion-induced interactions vary linearly with both the condensed DNA contour length and the BSA concentration, in agreement with the analytical and numerical analysis performed on model DNA condensates. We hope that future additional experiments can decide whether the rod-like morphology is the actual one we are dealing with (e.g. pulling experiments coupled with super-resolution fluorescence microscopy).


Subject(s)
DNA/chemistry , Serum Albumin, Bovine/chemistry , Animals , Biomechanical Phenomena , Cattle , Nucleic Acid Conformation , Optical Tweezers , Thermodynamics
2.
Biopolymers ; 107(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-27718222

ABSTRACT

We have investigated the interaction of the DNA molecule with the anticancer drug doxorubicin (doxo) by using three different experimental techniques: single molecule stretching, single molecule imaging, and dynamic light scattering. Such techniques allowed us to get new insights on the mechanical behavior of the DNA-doxo complexes as well as on the physical chemistry of the interaction. First, the contour length data obtained from single molecule stretching were used to extract the physicochemical parameters of the DNA-doxo interaction under different buffer conditions. This analysis has proven that the physical chemistry of such interaction can be modulated by changing the ionic strength of the surrounding buffer. In particular we have found that at low ionc strengths doxo interacts with DNA by simple intercalation (no aggregation) and/or by forming bound dimers. For high ionic strengths, otherwise, doxo-doxo self-association is enhanced, giving rise to the formation of bound doxo aggregates composed by 3 to 4 molecules along the double-helix. On the other hand, the results obtained for the persistence length of the DNA-doxo complexes is strongly force-dependent, presenting different behaviors when measured with stretching or non-stretching techniques.


Subject(s)
DNA Adducts/chemistry , DNA/chemistry , Doxorubicin/chemistry , DNA/metabolism , Doxorubicin/metabolism , Dynamic Light Scattering , Microscopy, Atomic Force , Optical Tweezers
3.
Biopolymers ; 105(4): 227-33, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26615825

ABSTRACT

In this work we have investigated the role of high molecular weight poly(ethylene-glycol) 8000 (PEG 8000) in modulating the interactions of the DNA molecule with two hydrophobic compounds: Ethidium Bromide (EtBr) and GelRed (GR). Both compounds are DNA intercalators and are used here to mimic the behavior of more complex DNA ligands such as chemotherapeutic drugs and proteins whose domains intercalate DNA. By means of single-molecule stretching experiments, we have been able to show that PEG 8000 strongly shifts the binding equilibrium between the intercalators and the DNA even at very low concentrations (1% in mass). Additionally, microcalorimetry experiments were performed to estimate the strength of the interaction between PEG and the DNA ligands. Our results suggest that PEG, depending on the system under study, may act as an "inert polymer" with no enthalpic contribution in some processes but, on the other hand, it may as well be an active (non-neutral) osmolyte in the context of modulating the activity of the reactants and products involved in DNA-ligand interactions.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Polyethylene Glycols/chemistry , Calorimetry , Ligands
4.
Soft Matter ; 11(21): 4306-14, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25913936

ABSTRACT

By using optical tweezers with an adjustable trap stiffness, we have performed systematic single molecule stretching experiments with two types of DNA-intercalator complexes, in order to investigate the effects of the maximum applied forces on the mechanical response of such complexes. We have explicitly shown that even in the low-force entropic regime the persistence length of the DNA-intercalator complexes is strongly force-dependent, although such behavior is not exhibited by bare DNA molecules. We discuss the possible physicochemical effects that can lead to such results. In particular, we propose that the stretching force can promote partial denaturation on the highly distorted double-helix of the DNA-intercalator complexes, which interfere strongly in the measured values of the persistence length.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Dynamic Light Scattering , Microscopy, Fluorescence , Optical Tweezers
5.
Eur Biophys J ; 44(1-2): 1-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25391339

ABSTRACT

We have performed single-molecule stretching and dynamic light-scattering (DLS) experiments to characterize the interaction between the DNA molecule and the fluorescent stain GelRed. The results from single-molecule stretching show that the persistence length of DNA-GelRed complexes increases as the ligand concentration increases up to a critical concentration, then decreases for higher concentrations. The contour length of the complexes, on the other hand, increases monotonically as a function of GelRed concentration, suggesting that intercalation is the main binding mechanism. To characterize the physical chemistry of the interaction, we used the McGhee-von Hippel binding isotherm to extract physicochemical data for the interaction from the contour length data. Such analysis enabled us to conclude that the GelRed stain is, in fact, a bis-intercalator. In addition, DLS experiments were performed to study the changes of the effective size of the DNA-GelRed complexes, measured as the hydrodynamic radius, as a function of ligand concentration. We observed qualitative agreement between the results obtained from the two techniques by comparing the behavior of the hydrodynamics radius and the radius of gyration, because the latter quantity can be expressed as a function of mechanical properties determined from the stretching experiments.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Light , Scattering, Radiation
6.
J Phys Chem B ; 118(18): 4832-9, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24720756

ABSTRACT

In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.


Subject(s)
DNA/chemistry , Ethidium/pharmacology , Intercalating Agents/pharmacology , Nucleic Acid Conformation/drug effects , Polyethylene Glycols/pharmacology , Spermine/pharmacology , Electrophoresis , Spectrum Analysis
7.
J Phys Chem B ; 117(46): 14345-50, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24164302

ABSTRACT

We have studied the interaction of the DNA molecule with the ligand 3,3'-diaminobenzidine (DAB) by performing single molecule stretching experiments with optical tweezers and dynamic light scattering (DLS) on the DNA-DAB complexes. In the stretching experiments, the persistence and contour lengths of the complexes were measured as a function of DAB concentration, allowing one to infer the main binding mechanism and also to determine the physicochemical parameters of the interaction. In the DLS experiments, the effective size of the complexes, measured as the hydrodynamic radius, was monitored as a function of DAB concentration. We found a qualitative agreement between the results obtained from the two techniques by comparing the behaviors of the hydrodynamics radius and the radius of gyration, since this last one can be expressed as a function of the persistence and contour lengths.


Subject(s)
Benzidines/chemistry , DNA/chemistry , DNA/metabolism , Ligands , Light , Optical Tweezers , Scattering, Radiation
8.
J Phys Chem B ; 117(24): 7292-6, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23713984

ABSTRACT

By performing single molecule stretching experiments with optical tweezers, we have studied the DNA interaction with the ligand Hoechst 33258. The mechanical properties of the complexes formed as a function of ligand concentration were directly determined from these measurements by fitting the force × extension curve to the WormLike Chain model of semiflexible polymers. In addition, the physicochemical parameters of the interaction were extracted from the persistence length data by using a previously developed two-sites quenched disorder statistical model, allowing the determination of the binding isotherm. Such approach has allowed us to decouple the two different binding modes present in this system. In particular, it was found that the binding isotherm consists of two Hill-type processes, one noncooperative and the other strongly cooperative. Finally, DNA condensation due to the interaction with the ligand was also verified and characterized here by analyzing the apparent contour length of the complexes.


Subject(s)
Bacteriophage lambda/chemistry , Bisbenzimidazole/chemistry , DNA, Viral/chemistry , Binding Sites , Ligands
9.
Phys Chem Chem Phys ; 15(26): 11070-7, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23715013

ABSTRACT

We have studied the interaction between the anticancer drug Actinomycin D (ActD) and the DNA molecule by performing single molecule stretching experiments and atomic force microscopy (AFM) imaging. From the stretching experiments, we determine how the mechanical properties of the DNA-ActD complexes vary as a function of drug concentration, for a fixed DNA concentration. We have found that the persistence lengths of the complexes formed behave non-monotonically: at low concentrations of ActD they are more flexible than the bare DNA molecule and become stiffer at higher concentrations. On the other hand, the contour length increases monotonically as a function of ActD concentration. Using a two-sites quenched disorder statistical model recently developed by us, we were able to extract chemical parameters such as the intrinsic binding constant and the degree of cooperativity from these pure mechanical measurements, thus performing a robust characterization of the interaction. The AFM images, otherwise, were used to measure the bending angle size distribution that ActD introduces on the double-helix structure and the average number of bendings per DNA molecule as a function of drug concentration, two quantities that cannot be determined from the stretching experiments.


Subject(s)
DNA/chemistry , Dactinomycin/chemistry , Microscopy, Atomic Force , Models, Molecular , Temperature
10.
Mater Sci Eng C Mater Biol Appl ; 32(1): 36-9, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-23177769

ABSTRACT

In the present work, we show that oxidized silicon may be successfully used to image multivalent cation-induced DNA condensates under the Atomic Force Microscope (AFM). The images thus obtained are good enough, allowing us to distinguish between different condensate forms and to perform nanometer-sized measurements. Qualitative results previously obtained using mica as a substrate are recovered here. We additionally show that the interactions between the cation spermidine (the condensing agent) and the DNA molecules are not significantly disturbed by the silicon surface, since the phase behavior of an ensemble of DNA molecules deposited on the silicon substrate as a function of the cation concentration is very similar to that found in solution.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force/methods , Silicon/chemistry , Spermidine/analogs & derivatives , Phosphates/chemistry , Spermidine/chemistry , Surface Properties
11.
Integr Biol (Camb) ; 4(5): 568-74, 2012 May.
Article in English | MEDLINE | ID: mdl-22513758

ABSTRACT

By performing single molecule stretching experiments with optical tweezers, we have studied the changes in the mechanical properties of DNA-cisplatin complexes as a function of some variables of interest such as the drug diffusion time and concentration in the sample. We propose a model to explain the behavior of the persistence length as a function of the drug concentration, extracting the binding data from pure mechanical measurements. Such analysis has allowed us to show that cisplatin binds cooperatively to the DNA molecule. In addition, DNA compaction by the action of the drug was also observed under our experimental conditions by studying the kinetics of some mechanical properties such as the radius of gyration and the end-to-end distance, e.g. Crisafuli et al., Integr. Biol., 2011, xx, xxxx.


Subject(s)
Cisplatin/chemistry , DNA/chemistry , Models, Chemical , Optical Tweezers , Binding Sites , Computer Simulation , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...