Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38592855

ABSTRACT

Cannabaceae species garner attention in plant research due to their diverse secretory structures and pharmacological potential associated with the production of secondary metabolites. This study aims to update our understanding of the secretory system in Hops (Humulus lupulus L.), an economically important species especially known for its usage in beer production. For that, stems, leaves, roots, and inflorescences were collected and processed for external morphology, anatomical, histochemical, ultrastructural and cytochemical analyses of the secretory sites. Our findings reveal three types of secretory structures comprising the secretory machinery of Hops: laticifer, phenolic idioblasts and glandular trichomes. The laticifer system is articulated, anastomosing and unbranched, traversing all plant organs, except the roots. Phenolic idioblasts are widely dispersed throughout the leaves, roots and floral parts of the species. Glandular trichomes appear as two distinct morphological types: capitate (spherical head) and peltate (radial head) and are found mainly in foliar and floral parts. The often-mixed chemical composition in the secretory sites serves to shield the plant from excessive UVB radiation, elevated temperatures, and damage inflicted by herbivorous animals or pathogenic microorganisms. Besides the exudate from peltate glandular trichomes (lupulin glands), latex and idioblast content are also likely contributors to the pharmacological properties of different Hop varieties, given their extensive presence in the plant body.

2.
Plants (Basel) ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960088

ABSTRACT

Leaf glands are found in many Rhamnaceae species, the buckthorn family, and are frequently used in taxonomic studies of the group, especially because they are easily visible to the naked eye. Despite the many records and extensive use in the taxonomy of the family, few studies deal with the classification of these glands and their roles for the plant. Thus, this study aimed to unravel the type, functioning, and putative functions of the leaf glands of three Brazilian forest species: Colubrina glandulosa Perkins, Gouania polygama (Jacq.) Urb., and Rhamnidium elaeocarpum Reissek. Leaves were collected and processed for surface, anatomical, histochemical, and ultrastructural analyses. In addition, the presence of visitor animals was registered in the field. The leaf glands of C. glandulosa and G. polygama are defined as extrafloral structured nectaries due to their anatomical structure, interaction with ants, and the presence of reduced sugars and of a set of organelles in the secretory cells. The unusual mechanism of nectar release and exposure in an apical pore stands out in G. polygama. The glands of R. elaeocarpum are ducts or cavities that secrete phenolic oil resin. Their presence is an atypical condition in the family, although they are often confused with mucilage reservoirs, much more common in Rhamnaceae. The extrafloral nectary, secretory cavity, and duct are associated with plant protection against phytophages, either by attracting patrol ants or by making the organs deterrent. Our data, combined with other previously obtained data, attest to the great diversity of gland types found in Rhamnaceae species.

SELECTION OF CITATIONS
SEARCH DETAIL