Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 11: 85, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21906288

ABSTRACT

BACKGROUND: The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. RESULTS: Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. CONCLUSIONS: The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.


Subject(s)
Bacterial Proteins , DNA Shuffling/methods , Endotoxins , Hemolysin Proteins , Insect Control/methods , Weevils , Amino Acid Sequence , Animals , Bacillus thuringiensis Toxins , Larva , Lethal Dose 50 , Molecular Sequence Annotation , Molecular Sequence Data , Mutation , Peptide Library , Protein Stability , Sequence Alignment , Sequence Homology, Amino Acid
2.
J Invertebr Pathol ; 104(3): 227-30, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20144614

ABSTRACT

Biotech crops expressing Bacillus thuringiensis Cry toxins present a valuable approach for insect control. Cry8Ka5, which is highly toxic to the cotton boll weevil (Anthonomus grandis), was used as a model to study toxin-ligand interactions. Three Cry-binding proteins were detected after toxin overlay assays. Following de novo sequencing, a heat-shock cognate protein and a V-ATPase were identified, whilst a approximately 120 kDa protein remained unknown. Additional Cry8Ka5-binding proteins were visualized by two-dimensional gel electrophoresis ligand blots.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Digestive System/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticides/metabolism , Pest Control, Biological/methods , Weevils/metabolism , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Endotoxins/chemistry , HSC70 Heat-Shock Proteins/analysis , HSC70 Heat-Shock Proteins/metabolism , Hemolysin Proteins/chemistry , Insecticides/chemistry , Larva/metabolism , Protein Binding , Vacuolar Proton-Translocating ATPases/analysis , Vacuolar Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...