Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408412

ABSTRACT

Ultrasonic inspection techniques and non-destructive tests are widely applied in evaluating products and equipment in the oil, petrochemical, steel, naval, and energy industries. These methods are well established and efficient for inspection procedures at room temperature. However, errors can be observed in the positioning and sizing of the flaws when such techniques are used during inspection procedures under high working temperatures. In such situations, the temperature gradients generate acoustic anisotropy and consequently distortion of the ultrasonic beams. Failure to consider such distortions in ultrasonic signals can result, in extreme situations, in mistaken decision making by inspectors and professionals responsible for guaranteeing product quality or the integrity of the evaluated equipment. In this scenario, this work presents a mathematical tool capable of mitigating positioning errors through the correction of focal laws. For the development of the tool, ray tracing concepts are used, as well as a model of heat propagation in solids and an experimentally defined linear approximation of dependence between sound speed and temperature. Using the focal law correction tool, the relative firing delays of the active elements are calculated considering the temperature gradients along the sonic path, and the results demonstrate a reduction of more than 68% in the error of flaw positioning.

2.
Sensors (Basel) ; 20(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321689

ABSTRACT

Climbing robots are characterized by a secure surface coupling that is designed to prevent falling. The robot coupling ability is assured by an adhesion method leading to nonlinear dynamic models with time-varying parameters that affect the robot's mobility. Additionally, the wheel friction and the force of gravity force are also relevant issues that can compromise the climbing ability if they are not well modeled. This work presents a model-based torque controller for velocity tracking in a four-wheeled climbing robot specially designed to inspect storage tanks. The model-based controller (MPC) compensates for the effects of nonlinearities due to the forces of gravity, friction, and adhesion through the dynamic and kinematic modeling of the climbing robot. Dynamic modeling is based on the Lagrange-Euler approach, which allows a better understanding of how forces and torques affect the robot's movement. Besides, an analysis of the interaction force between the robot and the contact surface is proposed, since this force affects the motion of the climbing robot according to spatial orientation. Finally, simulations are carried out to examine the robot's dynamics during the climbing movement, and the MPC is validated through the redrobot simulator V-REP and practical experiments. The presented results highlight the compensation of the nonlinear effects due to the robot's climbing motion by the proposed MPC controller.

3.
Sensors (Basel) ; 19(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766772

ABSTRACT

This paper presents an omnidirectional RGB-D (RGB + Distance fusion) sensor prototype using an actuated LIDAR (Light Detection and Ranging) and an RGB camera. Besides the sensor, a novel mapping strategy is developed considering sensor scanning characteristics. The sensor can gather RGB and 3D data from any direction by toppling in 90 degrees a laser scan sensor and rotating it about its central axis. The mapping strategy is based on two environment maps, a local map for instantaneous perception, and a global map for perception memory. The 2D local map represents the surface in front of the robot and may contain RGB data, allowing environment reconstruction and human detection, similar to a sliding window that moves with a robot and stores surface data.

SELECTION OF CITATIONS
SEARCH DETAIL
...